An air mixture containing 20% Ozone (Os) is fed to a plug flow reactor (PFR), with a total molar flow rate of 3 mol/min. Ozone in the air mixture is degraded to oxygen in the reactor. The temperature and the pressure in the reactor are 366 K and 1.5 atm, respectively. The degradation reaction is an elementary reaction and the reaction rate constant is 3 L/(mol-min). 20₁ → 30₂ a) Calculate the concentration of each component, and the volumetric flow rate in the feed. b) Derive the reaction rate law. c) Construct the stoichiometric table. d) Calculate the reactor volume required for 50% conversion of ozone. e) Calculate the concentration of each component, and volumetric flow rate at the exit of the reactor.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
J 5
An air mixture containing 20% Ozone (Os) is fed to a plug flow reactor (PFR), with a total molar flow
rate of 3 mol/min. Ozone in the air mixture is degraded to oxygen in the reactor. The temperature and the
pressure in the reactor are 366 and 1.5 atm, respectively. The degradation reaction is an elementary reaction
and the reaction rate constant is 3 L/(mol-min).
20₁→ 30₂
a) Calculate the concentration of each component, and the volumetric flow rate in the feed.
b) Derive the reaction rate law.
c) Construct the stoichiometric table.
d) Calculate the reactor volume required for 50% conversion of ozone.
e) Calculate the concentration of each component, and volumetric flow rate at the exit of the reactor.
CA
Transcribed Image Text:An air mixture containing 20% Ozone (Os) is fed to a plug flow reactor (PFR), with a total molar flow rate of 3 mol/min. Ozone in the air mixture is degraded to oxygen in the reactor. The temperature and the pressure in the reactor are 366 and 1.5 atm, respectively. The degradation reaction is an elementary reaction and the reaction rate constant is 3 L/(mol-min). 20₁→ 30₂ a) Calculate the concentration of each component, and the volumetric flow rate in the feed. b) Derive the reaction rate law. c) Construct the stoichiometric table. d) Calculate the reactor volume required for 50% conversion of ozone. e) Calculate the concentration of each component, and volumetric flow rate at the exit of the reactor. CA
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The