An accretion disc may form around a black hole. This is a thin disc of orbiting matter spanning radii r = Rin to Rout around the black hole. We assume that Rout » Rin and so we make the simplifying approximation that Rout→+00. The disc radiates according to the following equation 3 GM M D(t,0)= ' (¹-[-]"). 4 T3 Here, r and are the usual polar coordinates with the origin at the centre of the disc. G is the gravitational constant, M is the mass of the black hole, Rin is the disc inner radius, M is the accretion rate - all these are constants. (a) Integrate D(r, 0) over the surface of the disc to find the total radiation output of the disc. (b) Find the total radiation in the case of Rin = 6GM/c².
An accretion disc may form around a black hole. This is a thin disc of orbiting matter spanning radii r = Rin to Rout around the black hole. We assume that Rout » Rin and so we make the simplifying approximation that Rout→+00. The disc radiates according to the following equation 3 GM M D(t,0)= ' (¹-[-]"). 4 T3 Here, r and are the usual polar coordinates with the origin at the centre of the disc. G is the gravitational constant, M is the mass of the black hole, Rin is the disc inner radius, M is the accretion rate - all these are constants. (a) Integrate D(r, 0) over the surface of the disc to find the total radiation output of the disc. (b) Find the total radiation in the case of Rin = 6GM/c².
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images