Along the curve r(t) = t² i +tj-k, 0≤t≤ 1, evaluate each of the following integrals. a. [(x-y+z)dx _b. [(x-y+z)dy c. [(x-y+z)dz с с

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Certainly! Below is a transcription of the provided image, suitable for an educational website.
________________________________________________________________________

**Vector Field Line Integrals**

Analyze the vector field along a specified curve and evaluate the given integrals. Consider the vector function \( \mathbf{r}(t) = t^2 \mathbf{i} + t \mathbf{j} - t \mathbf{k} \) for \( 0 \leq t \leq 1 \).

We need to evaluate each of the following integrals along the curve \( C \):

a. \( \int_{C} (x - y + z) \, dx \)

b. \( \int_{C} (x - y + z) \, dy \)

c. \( \int_{C} (x - y + z) \, dz \)

**Solution Steps:**

1. **Parameterize the Curve \( C \):**
   Given by \( \mathbf{r}(t) = t^2 \mathbf{i} + t \mathbf{j} - t \mathbf{k} \):
   - \( x = t^2 \)
   - \( y = t \)
   - \( z = -t \)

2. **Compute Derivatives for \( dx \), \( dy \), and \( dz \):**
   - \( dx = 2t \, dt \)
   - \( dy = dt \)
   - \( dz = -dt \)

3. **Substitute \( x \), \( y \), \( z \), and their differentials in each integral:**

   **a.** Integral \( \int_{C} (x - y + z) \, dx \):
   \[
   = \int_{0}^{1} \left( t^2 - t - t \right) \cdot 2t \, dt
   = \int_{0}^{1} \left( t^2 - t \right) \cdot 2t \, dt
   = \int_{0}^{1} \left( 2t^3 - 2t^2 \right) \, dt
   = \left[ \frac{1}{2} t^4 - \frac{2}{3} t^3 \right]_{0}^{1}
   = \frac{1}{2} - \frac{2}{3} = -\frac{1
Transcribed Image Text:Certainly! Below is a transcription of the provided image, suitable for an educational website. ________________________________________________________________________ **Vector Field Line Integrals** Analyze the vector field along a specified curve and evaluate the given integrals. Consider the vector function \( \mathbf{r}(t) = t^2 \mathbf{i} + t \mathbf{j} - t \mathbf{k} \) for \( 0 \leq t \leq 1 \). We need to evaluate each of the following integrals along the curve \( C \): a. \( \int_{C} (x - y + z) \, dx \) b. \( \int_{C} (x - y + z) \, dy \) c. \( \int_{C} (x - y + z) \, dz \) **Solution Steps:** 1. **Parameterize the Curve \( C \):** Given by \( \mathbf{r}(t) = t^2 \mathbf{i} + t \mathbf{j} - t \mathbf{k} \): - \( x = t^2 \) - \( y = t \) - \( z = -t \) 2. **Compute Derivatives for \( dx \), \( dy \), and \( dz \):** - \( dx = 2t \, dt \) - \( dy = dt \) - \( dz = -dt \) 3. **Substitute \( x \), \( y \), \( z \), and their differentials in each integral:** **a.** Integral \( \int_{C} (x - y + z) \, dx \): \[ = \int_{0}^{1} \left( t^2 - t - t \right) \cdot 2t \, dt = \int_{0}^{1} \left( t^2 - t \right) \cdot 2t \, dt = \int_{0}^{1} \left( 2t^3 - 2t^2 \right) \, dt = \left[ \frac{1}{2} t^4 - \frac{2}{3} t^3 \right]_{0}^{1} = \frac{1}{2} - \frac{2}{3} = -\frac{1
Expert Solution
steps

Step by step

Solved in 3 steps with 15 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning