All parts of this question concern the function f(x) = 7 sin x + 3 cos x. (a) Find the smallest positive constant M that satisfies M ≥ |f(*) (t) | for every possible combination of an integer k>0 and an evaluation point te (-∞0, +∞0). Hint: A standard trigonometric identity implies that, for a certain angle , one has f(x) = √58 sin (x + p) for all real x. Answer: M = sqrt(58) B Answer: n = 10 Recall the standard decomposition f(x) = T₁(x) + E₂(x), in which Lagrange's formula says E,(™) valid for every integer n ≥ 0. In both parts below, estimate En(x) using Lagrange's formula with the constant M found in part (a). (Use technology as required.) f(n+1) (t) (n + 1)! = Answer: a = -x+1 for some t between 0 and x. This is (b) Find the smallest n for which the polynomial value T, (0.3) provides an approximation for f(0.3) that is guaranteed to be accurate to within 11 decimal places: Hint: To guarantee D correct digits after the decimal point, accounting for rounding, one must have |E, (0.3)| ≤ 0.5 × 10-D. (c) Suppose n = 6 is prescribed. Find the largest positive number a such that the approximation T6(x) for f(x) is guaranteed to be accurate to within 5 decimal places, for all in the symmetric interval (-a, a).
All parts of this question concern the function f(x) = 7 sin x + 3 cos x. (a) Find the smallest positive constant M that satisfies M ≥ |f(*) (t) | for every possible combination of an integer k>0 and an evaluation point te (-∞0, +∞0). Hint: A standard trigonometric identity implies that, for a certain angle , one has f(x) = √58 sin (x + p) for all real x. Answer: M = sqrt(58) B Answer: n = 10 Recall the standard decomposition f(x) = T₁(x) + E₂(x), in which Lagrange's formula says E,(™) valid for every integer n ≥ 0. In both parts below, estimate En(x) using Lagrange's formula with the constant M found in part (a). (Use technology as required.) f(n+1) (t) (n + 1)! = Answer: a = -x+1 for some t between 0 and x. This is (b) Find the smallest n for which the polynomial value T, (0.3) provides an approximation for f(0.3) that is guaranteed to be accurate to within 11 decimal places: Hint: To guarantee D correct digits after the decimal point, accounting for rounding, one must have |E, (0.3)| ≤ 0.5 × 10-D. (c) Suppose n = 6 is prescribed. Find the largest positive number a such that the approximation T6(x) for f(x) is guaranteed to be accurate to within 5 decimal places, for all in the symmetric interval (-a, a).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Just need part c), please show all work.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,