Let \( T: M_{2 \times 2} \rightarrow P_2 \) be defined by \[ T \left( \begin{bmatrix} u & v \\ c & d \end{bmatrix} \right) = a + b + c + dx^2. \] ### A) A basis for the image (range) of \( T \) would be: - \(\begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix}\) - \(\{0\}\) - \(\{1, 1, 1, x^2\}\) - \(\begin{bmatrix} 0 & 0 \end{bmatrix}\) - \(\{1, x^2\}\) - \(\{1, x, x^2\}\) - \(\begin{bmatrix} 1 & -1 & \begin{bmatrix} 1 & 0 \end{bmatrix} \\ 0 & 0 & \begin{bmatrix} -1 & 0 \end{bmatrix} \end{bmatrix}\) ### B) A basis for the kernel of \( T \) would be: - \(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}\) - \(\begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}\) - \(\{1, x, x^2\}\) - \(\begin{bmatrix} 0 & 0 \end{bmatrix}\) - \(\{1, x^2\}\) - \(\{1, 1, 1, x^2\}\) - \(\{0\}\) This text represents a selection question commonly found in a linear algebra course, where students are tasked with identifying the basis of the image (range) and kernel of a given transformation \( T \).

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
Let \( T: M_{2 \times 2} \rightarrow P_2 \) be defined by 

\[
T \left( \begin{bmatrix} u & v \\ c & d \end{bmatrix} \right) = a + b + c + dx^2.
\]

### A) A basis for the image (range) of \( T \) would be:

- \(\begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix}\)
- \(\{0\}\)
- \(\{1, 1, 1, x^2\}\)
- \(\begin{bmatrix} 0 & 0 \end{bmatrix}\)
- \(\{1, x^2\}\)
- \(\{1, x, x^2\}\)
- \(\begin{bmatrix} 1 & -1 & \begin{bmatrix} 1 & 0 \end{bmatrix} \\ 0 & 0 & \begin{bmatrix} -1 & 0 \end{bmatrix} \end{bmatrix}\)

### B) A basis for the kernel of \( T \) would be:

- \(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}\)
- \(\begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}\)
- \(\{1, x, x^2\}\)
- \(\begin{bmatrix} 0 & 0 \end{bmatrix}\)
- \(\{1, x^2\}\)
- \(\{1, 1, 1, x^2\}\)
- \(\{0\}\)

This text represents a selection question commonly found in a linear algebra course, where students are tasked with identifying the basis of the image (range) and kernel of a given transformation \( T \).
Transcribed Image Text:Let \( T: M_{2 \times 2} \rightarrow P_2 \) be defined by \[ T \left( \begin{bmatrix} u & v \\ c & d \end{bmatrix} \right) = a + b + c + dx^2. \] ### A) A basis for the image (range) of \( T \) would be: - \(\begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix}\) - \(\{0\}\) - \(\{1, 1, 1, x^2\}\) - \(\begin{bmatrix} 0 & 0 \end{bmatrix}\) - \(\{1, x^2\}\) - \(\{1, x, x^2\}\) - \(\begin{bmatrix} 1 & -1 & \begin{bmatrix} 1 & 0 \end{bmatrix} \\ 0 & 0 & \begin{bmatrix} -1 & 0 \end{bmatrix} \end{bmatrix}\) ### B) A basis for the kernel of \( T \) would be: - \(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}\) - \(\begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}\) - \(\{1, x, x^2\}\) - \(\begin{bmatrix} 0 & 0 \end{bmatrix}\) - \(\{1, x^2\}\) - \(\{1, 1, 1, x^2\}\) - \(\{0\}\) This text represents a selection question commonly found in a linear algebra course, where students are tasked with identifying the basis of the image (range) and kernel of a given transformation \( T \).
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education