Let R be a ring. Define a functione: R[x] ×RR by the rule e(anx" +.+ax+a0,r) = anr" + +ar+ao. In other words, given the input of a polynomial f(x) € R[x] and an element r E R, e(f(x),r) is obtained by substitutingr for x in f(x). (a) Prove that, if R is a commutative ring, then e(f,r)+e(g,r) = e(f+g.r) and e(f,r)- e(8,r) = e(f8.r) for any two linear polynomials f,g € R[x] and anyrER. [In fact both facts are true for polynomials f,g of any degree. I encourage you to write up a proof of the more general versions instead, if you can. But I didn't want to burden everyone with having to use indices and arbitrarily long sums.] (b) If R is a non-commutative ring, just one of the two equations in part (a) still holds for all r, f, and g. Which one? Explain how you could make a counterexample to the other equation. [If you know a non-commutative ring, feel free to give an actual counterexample in that ring instead of "explaining how".]
Let R be a ring. Define a functione: R[x] ×RR by the rule e(anx" +.+ax+a0,r) = anr" + +ar+ao. In other words, given the input of a polynomial f(x) € R[x] and an element r E R, e(f(x),r) is obtained by substitutingr for x in f(x). (a) Prove that, if R is a commutative ring, then e(f,r)+e(g,r) = e(f+g.r) and e(f,r)- e(8,r) = e(f8.r) for any two linear polynomials f,g € R[x] and anyrER. [In fact both facts are true for polynomials f,g of any degree. I encourage you to write up a proof of the more general versions instead, if you can. But I didn't want to burden everyone with having to use indices and arbitrarily long sums.] (b) If R is a non-commutative ring, just one of the two equations in part (a) still holds for all r, f, and g. Which one? Explain how you could make a counterexample to the other equation. [If you know a non-commutative ring, feel free to give an actual counterexample in that ring instead of "explaining how".]
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,