**Question:** Which is a table of ordered pairs defined by \( y = \dfrac{2}{7}x + 2 \)? **Answer Choices:** 1. \[ \begin{array}{c|c} x & f(x) \\ \hline -13 & -24 \\ 14 & 46 \\ -14 & 6 \\ 21 & -4 \\ \end{array} \] 2. \[ \begin{array}{c|c} x & f(x) \\ \hline 7 & 0 \\ 14 & -2 \\ -14 & 6 \\ 21 & -4 \\ \end{array} \] 3. \[ \begin{array}{c|c} x & f(x) \\ \hline 7 & 0 \\ 14 & -2 \\ -14 & -24 \\ 21 & -4 \\ \end{array} \] **Explanation:** First, let’s rewrite the equation \( y = \dfrac{2}{7}x + 2 \) in function form: \( f(x) = \dfrac{2}{7}x + 2 \). To find the correct table of ordered pairs, substitute each \(x\) value from the tables into the function to see if \(f(x)\) equals the corresponding \(y\) value. For the first table: 1. For \( x = -13 \): \[ f(-13) = \dfrac{2}{7}(-13) + 2 = -\dfrac{26}{7} + 2 = -\dfrac{26}{7} + \dfrac{14}{7} = -\dfrac{12}{7} \approx -1.71 \neq -24 \] 2. For \( x = 14 \): \[ f(14) = \dfrac{2}{7}(14) + 2 = 4 + 2 = 6 \neq 46 \] 3. For \( x = -14 \): \[ f(-14) = \dfrac{2}{7}(-14) + 2 = -4 + 2 = -2 \neq 6 \] 4. For \( x = 21 \ The image displays two tables of values representing functions \( f(x) \) for different input values of \( x \). Here's the detailed transcription: ### Table 1 This table shows the values of \( f(x) \) for given \( x \) values: | \( x \) | \( f(x) \) | |:-------:|:---------:| | 8 | 18 | | 14 | 18 | | -14 | 6 | | 21 | 46 | ### Table 2 This table presents another set of values of \( f(x) \) for different \( x \) values: | \( x \) | \( f(x) \) | |:-------:|:---------:| | 15 | 32 | | 14 | -24 | | -14 | 6 | | 22 | -4 | Explanation: - Each table consists of two columns: one for the input value \( x \) and one for the corresponding output value \( f(x) \). - In the first table, the function \( f(x) \) maps: - \( x = 8 \) to \( f(x) = 18 \) - \( x = 14 \) to \( f(x) = 18 \) - \( x = -14 \) to \( f(x) = 6 \) - \( x = 21 \) to \( f(x) = 46 \) - In the second table, the function \( f(x) \) maps: - \( x = 15 \) to \( f(x) = 32 \) - \( x = 14 \) to \( f(x) = -24 \) - \( x = -14 \) to \( f(x) = 6 \) - \( x = 22 \) to \( f(x) = -4 \) These tables can be used to understand the different outputs of the same or different functions for various input values of \( x \).

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
**Question:**

Which is a table of ordered pairs defined by \( y = \dfrac{2}{7}x + 2 \)?

**Answer Choices:**

1. 
\[
\begin{array}{c|c}
x & f(x) \\
\hline
-13 & -24 \\
14 & 46 \\
-14 & 6 \\
21 & -4 \\
\end{array}
\]

2. 
\[
\begin{array}{c|c}
x & f(x) \\
\hline
7 & 0 \\
14 & -2 \\
-14 & 6 \\
21 & -4 \\
\end{array}
\]

3. 
\[
\begin{array}{c|c}
x & f(x) \\
\hline
7 & 0 \\
14 & -2 \\
-14 & -24 \\
21 & -4 \\
\end{array}
\]

**Explanation:**

First, let’s rewrite the equation \( y = \dfrac{2}{7}x + 2 \) in function form: \( f(x) = \dfrac{2}{7}x + 2 \).

To find the correct table of ordered pairs, substitute each \(x\) value from the tables into the function to see if \(f(x)\) equals the corresponding \(y\) value. 

For the first table:

1. For \( x = -13 \):
   \[
   f(-13) = \dfrac{2}{7}(-13) + 2 = -\dfrac{26}{7} + 2 = -\dfrac{26}{7} + \dfrac{14}{7} = -\dfrac{12}{7} \approx -1.71 \neq -24
   \]
2. For \( x = 14 \):
   \[
   f(14) = \dfrac{2}{7}(14) + 2 = 4 + 2 = 6 \neq 46
   \]
3. For \( x = -14 \):
   \[
   f(-14) = \dfrac{2}{7}(-14) + 2 = -4 + 2 = -2 \neq 6
   \]
4. For \( x = 21 \
Transcribed Image Text:**Question:** Which is a table of ordered pairs defined by \( y = \dfrac{2}{7}x + 2 \)? **Answer Choices:** 1. \[ \begin{array}{c|c} x & f(x) \\ \hline -13 & -24 \\ 14 & 46 \\ -14 & 6 \\ 21 & -4 \\ \end{array} \] 2. \[ \begin{array}{c|c} x & f(x) \\ \hline 7 & 0 \\ 14 & -2 \\ -14 & 6 \\ 21 & -4 \\ \end{array} \] 3. \[ \begin{array}{c|c} x & f(x) \\ \hline 7 & 0 \\ 14 & -2 \\ -14 & -24 \\ 21 & -4 \\ \end{array} \] **Explanation:** First, let’s rewrite the equation \( y = \dfrac{2}{7}x + 2 \) in function form: \( f(x) = \dfrac{2}{7}x + 2 \). To find the correct table of ordered pairs, substitute each \(x\) value from the tables into the function to see if \(f(x)\) equals the corresponding \(y\) value. For the first table: 1. For \( x = -13 \): \[ f(-13) = \dfrac{2}{7}(-13) + 2 = -\dfrac{26}{7} + 2 = -\dfrac{26}{7} + \dfrac{14}{7} = -\dfrac{12}{7} \approx -1.71 \neq -24 \] 2. For \( x = 14 \): \[ f(14) = \dfrac{2}{7}(14) + 2 = 4 + 2 = 6 \neq 46 \] 3. For \( x = -14 \): \[ f(-14) = \dfrac{2}{7}(-14) + 2 = -4 + 2 = -2 \neq 6 \] 4. For \( x = 21 \
The image displays two tables of values representing functions \( f(x) \) for different input values of \( x \). Here's the detailed transcription:

### Table 1
This table shows the values of \( f(x) \) for given \( x \) values:

| \( x \)  | \( f(x) \) |
|:-------:|:---------:|
| 8       | 18        |
| 14      | 18        |
| -14     | 6         |
| 21      | 46        |

### Table 2
This table presents another set of values of \( f(x) \) for different \( x \) values:

| \( x \)  | \( f(x) \) |
|:-------:|:---------:|
| 15      | 32        |
| 14      | -24       |
| -14     | 6         |
| 22      | -4        |

Explanation:
- Each table consists of two columns: one for the input value \( x \) and one for the corresponding output value \( f(x) \).
- In the first table, the function \( f(x) \) maps:
  - \( x = 8 \) to \( f(x) = 18 \)
  - \( x = 14 \) to \( f(x) = 18 \)
  - \( x = -14 \) to \( f(x) = 6 \)
  - \( x = 21 \) to \( f(x) = 46 \)
- In the second table, the function \( f(x) \) maps:
  - \( x = 15 \) to \( f(x) = 32 \)
  - \( x = 14 \) to \( f(x) = -24 \)
  - \( x = -14 \) to \( f(x) = 6 \)
  - \( x = 22 \) to \( f(x) = -4 \)

These tables can be used to understand the different outputs of the same or different functions for various input values of \( x \).
Transcribed Image Text:The image displays two tables of values representing functions \( f(x) \) for different input values of \( x \). Here's the detailed transcription: ### Table 1 This table shows the values of \( f(x) \) for given \( x \) values: | \( x \) | \( f(x) \) | |:-------:|:---------:| | 8 | 18 | | 14 | 18 | | -14 | 6 | | 21 | 46 | ### Table 2 This table presents another set of values of \( f(x) \) for different \( x \) values: | \( x \) | \( f(x) \) | |:-------:|:---------:| | 15 | 32 | | 14 | -24 | | -14 | 6 | | 22 | -4 | Explanation: - Each table consists of two columns: one for the input value \( x \) and one for the corresponding output value \( f(x) \). - In the first table, the function \( f(x) \) maps: - \( x = 8 \) to \( f(x) = 18 \) - \( x = 14 \) to \( f(x) = 18 \) - \( x = -14 \) to \( f(x) = 6 \) - \( x = 21 \) to \( f(x) = 46 \) - In the second table, the function \( f(x) \) maps: - \( x = 15 \) to \( f(x) = 32 \) - \( x = 14 \) to \( f(x) = -24 \) - \( x = -14 \) to \( f(x) = 6 \) - \( x = 22 \) to \( f(x) = -4 \) These tables can be used to understand the different outputs of the same or different functions for various input values of \( x \).
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education