a(k) = eak coshw.k coshw, k ewok te-wok 2 eak coshw.k eak ewokteake-wok 2 X(Z) 3D글 z(enk e.k) + 글 z(enke-w.k) Z – transform of a" : |Z(a") Z(a") = . - 1 1-az-1 ROC : |Z| > |a| Z-a X(2) = ± ( + Z-eake z-eake-wo because a = e"ew• in Z(ew.k) and a = e"e-w• from equation 1, ed e z-e"e -wo+z-eªewo X(2) = (z-e"e-w) (z-e"ewo) 2z-e“ (e+wo +e¬Wo) X(2) = (z2 –2ea zcoshuwote2a) (z) z²–ze®coshw.K z2–2ze coshw.K+e2a 2/2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
I need the answer as soon as possible
How did he get the
value inside the line
a (k) = eak coshw,k
-wok
coshw. k
ewok
+e
2
eak ewokteake-wok
eak coshw.k
Z - trans form of a" :
Z(a") =
1
1-az-1
Z(a") =
ROC : |Z| > |a|
Z-a
X(2) = ( +)
....
z-eakewo
z-eake-wo
because a = e“ew• in Z(ew.k) and a = e"e-Wo
from equation 1,
ede-wo
z-e"e-wo +z-e"ewo
|X(2)
(z-e"e-w•)(z-e"ewo)
2z-e" (e+wo+e-wo)
X(2) = -
(z2–2ea zcoshw.te2a)
(z):
z²–ze coshw,K
z2–2ze coshw.K+e2a
Transcribed Image Text:How did he get the value inside the line a (k) = eak coshw,k -wok coshw. k ewok +e 2 eak ewokteake-wok eak coshw.k Z - trans form of a" : Z(a") = 1 1-az-1 Z(a") = ROC : |Z| > |a| Z-a X(2) = ( +) .... z-eakewo z-eake-wo because a = e“ew• in Z(ew.k) and a = e"e-Wo from equation 1, ede-wo z-e"e-wo +z-e"ewo |X(2) (z-e"e-w•)(z-e"ewo) 2z-e" (e+wo+e-wo) X(2) = - (z2–2ea zcoshw.te2a) (z): z²–ze coshw,K z2–2ze coshw.K+e2a
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,