Air flows in a pipe under fully developed conditions with an average velocity of 1.25 m/s and a temperature of 24°C. The pipe's inner diameter is 4 cm, and its length is 4 m. The first half of the pipe is kept at a constant wall temperature of 100°C. The second half of the pipe is subjected to a constant heat flux of 200 W. The properties of air at 80°C are p = 0.9994 kg/m³, k = 0.02953 W/m-K, v= 2.097 x 10-5 m²/s, cp= 1008 J/kg-K, and Pr = 0.7154. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Air 1.25 m/s 2m T₁ = 100°C D = 4 cm 2m Q₁ = 200 W
Air flows in a pipe under fully developed conditions with an average velocity of 1.25 m/s and a temperature of 24°C. The pipe's inner diameter is 4 cm, and its length is 4 m. The first half of the pipe is kept at a constant wall temperature of 100°C. The second half of the pipe is subjected to a constant heat flux of 200 W. The properties of air at 80°C are p = 0.9994 kg/m³, k = 0.02953 W/m-K, v= 2.097 x 10-5 m²/s, cp= 1008 J/kg-K, and Pr = 0.7154. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Air 1.25 m/s 2m T₁ = 100°C D = 4 cm 2m Q₁ = 200 W
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
I tried 33.7oC and also 50.517oC but it still says it is incorrect (view attached screenshot). I appreciate your efforts, but unfortunately it says it is still wrong. Any more ideas of what the correct answer might be? I really want to understand how to solve this problem correctly. Thank you!
![!
Required information
Air flows in a pipe under fully developed conditions with an average velocity of 1.25 m/s and a temperature of 24°C. The
pipe's inner diameter is 4 cm, and its length is 4 m. The first half of the pipe is kept at a constant wall temperature of 100°C.
The second half of the pipe is subjected to a constant heat flux of 200 W. The properties of air at 80°C are p = 0.9994
kg/m³, k = 0.02953 W/m-K, v= 2.097 x 10-5 m²/s, cp=1008 J/kg-K, and Pr = 0.7154.
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
Air
1.25 m/s-
2 m
T, = 100°C
D = 4 cm
2 m
Q₁ = 200 W
Determine the air temperature at the 2 m length.
The air temperature at the 2 m length is 50.517
°C.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffb9a7c18-65f1-48ed-bb7e-4937a04e4157%2F748a947f-090c-49bc-9c27-54f0bea89151%2Fzo51pvc_processed.png&w=3840&q=75)
Transcribed Image Text:!
Required information
Air flows in a pipe under fully developed conditions with an average velocity of 1.25 m/s and a temperature of 24°C. The
pipe's inner diameter is 4 cm, and its length is 4 m. The first half of the pipe is kept at a constant wall temperature of 100°C.
The second half of the pipe is subjected to a constant heat flux of 200 W. The properties of air at 80°C are p = 0.9994
kg/m³, k = 0.02953 W/m-K, v= 2.097 x 10-5 m²/s, cp=1008 J/kg-K, and Pr = 0.7154.
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
Air
1.25 m/s-
2 m
T, = 100°C
D = 4 cm
2 m
Q₁ = 200 W
Determine the air temperature at the 2 m length.
The air temperature at the 2 m length is 50.517
°C.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY