Air enters a compressor operating at steady state at 1 atm with a specific enthalpy of 290 kJ/kg and exits at a higher pressure with a specific enthalpy of 1023 kJ/kg. The mass flow rate is 0.1 kg/s. Kinetic and potential energy effects are negligible and the air can be modeled as an ideal gas. If the compressor power input is 77 kW, the rate of heat transfer between the air and its surroundings is 3.7 kW from the air to the surroundings. O 150.3 kW from the air to the surroundings. O 150.3 kW from the surroundings to the air. O 3.7 kW from the surroundings to the air.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

Question 14

 

Air enters a compressor operating at steady state at 1 atm with a specific enthalpy of 290 kJ/kg and exits at a higher pressure with a
specific enthalpy of 1023 kJ/kg. The mass flow rate is 0.1 kg/s. Kinetic and potential energy effects are negligible and the air can be
modeled as an ideal gas. If the compressor power input is 77 kW, the rate of heat transfer between the air and its surroundings is
3.7 kW from the air to the surroundings.
O 150.3 kW from the air to the surroundings.
O 150.3 kW from the surroundings to the air.
O 3.7 kW from the surroundings to the air.
Transcribed Image Text:Air enters a compressor operating at steady state at 1 atm with a specific enthalpy of 290 kJ/kg and exits at a higher pressure with a specific enthalpy of 1023 kJ/kg. The mass flow rate is 0.1 kg/s. Kinetic and potential energy effects are negligible and the air can be modeled as an ideal gas. If the compressor power input is 77 kW, the rate of heat transfer between the air and its surroundings is 3.7 kW from the air to the surroundings. O 150.3 kW from the air to the surroundings. O 150.3 kW from the surroundings to the air. O 3.7 kW from the surroundings to the air.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Thermodynamic Work done
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON