Air at Ti = 20°C and P₁ = 100 kPa enters a compressor with a mass flow rate of m= 0.025 kg/s through a circular inlet pipe having an inner diameter of D₁ =1 cm. The compressor operates at steady state. The mechanical power input to the compressor is We 3.5 kW. Air exits the compressor at T₂ = 50°C and P₂ = 650 kPa. The diameter of the exit pipe is large and therefore the velocity of the air leaving the compressor is small and its kinetic energy negligible. However, the kinetic energy of the air entering the compressor is not negligible. The outlet of the compressor is connected to a rigid storage tank having a volume of V tank = 1.5 m³. The tank initially contains air at Pini = 100 kPa. The pressure of the air within the tank rises as it is filled, but heat transfer between the tank and the surroundings keeps the temperature of the air in the tank always at Ttank = 25°C. This compressor is not adiabatic. Assume that the air obeys the ideal law with R = 287 J/kg-K. Assume that the specific heat capacities of air are constant and equal to cv = 717 J/kg-K and cp = 1005 J/kg-K. State and justify any other assumptions that you employ. Determine the rate of heat transfer to the compressor (W). Determine the mass of air in the tank after t = 200 sec of operation.
Air at Ti = 20°C and P₁ = 100 kPa enters a compressor with a mass flow rate of m= 0.025 kg/s through a circular inlet pipe having an inner diameter of D₁ =1 cm. The compressor operates at steady state. The mechanical power input to the compressor is We 3.5 kW. Air exits the compressor at T₂ = 50°C and P₂ = 650 kPa. The diameter of the exit pipe is large and therefore the velocity of the air leaving the compressor is small and its kinetic energy negligible. However, the kinetic energy of the air entering the compressor is not negligible. The outlet of the compressor is connected to a rigid storage tank having a volume of V tank = 1.5 m³. The tank initially contains air at Pini = 100 kPa. The pressure of the air within the tank rises as it is filled, but heat transfer between the tank and the surroundings keeps the temperature of the air in the tank always at Ttank = 25°C. This compressor is not adiabatic. Assume that the air obeys the ideal law with R = 287 J/kg-K. Assume that the specific heat capacities of air are constant and equal to cv = 717 J/kg-K and cp = 1005 J/kg-K. State and justify any other assumptions that you employ. Determine the rate of heat transfer to the compressor (W). Determine the mass of air in the tank after t = 200 sec of operation.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY