Air at 105 kPa and 37°C flows upward through a 6-cm-diameter inclined duct at a rate of 65 L/s. The duct diameter is then reduced to 4 cm through a reducer. The pressure change across the reducer is measured by a water manometer. The elevation difference between the two points on the pipe where the two arms of the manometer are attached is 0.20 m. Determine the differential height between the fluid levels of the two arms of the manometer.
Fluid Pressure
The term fluid pressure is coined as, the measurement of the force per unit area of a given surface of a closed container. It is a branch of physics that helps to study the properties of fluid under various conditions of force.
Gauge Pressure
Pressure is the physical force acting per unit area on a body; the applied force is perpendicular to the surface of the object per unit area. The air around us at sea level exerts a pressure (atmospheric pressure) of about 14.7 psi but this doesn’t seem to bother anyone as the bodily fluids are constantly pushing outwards with the same force but if one swims down into the ocean a few feet below the surface one can notice the difference, there is increased pressure on the eardrum, this is due to an increase in hydrostatic pressure.
Air at 105 kPa and 37°C flows upward through
a 6-cm-diameter inclined duct at a rate of 65 L/s. The duct
diameter is then reduced to 4 cm through a reducer. The
pressure change across the reducer is measured by a water
manometer. The elevation difference between the two points
on the pipe where the two arms of the manometer are
attached is 0.20 m. Determine the differential height between
the fluid levels of the two arms of the manometer.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 6 images