After determining whether the variation model below is of the form y = kx or y =4₁ x find the value of k. x20 y 1 30 02-² 5 0k-¹ 4 Ok=1/ 02-²713 O 40 1 60 60 1 90 80 100 1 1 120 150

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
After determining whether the variation model below is of the form \( y = kx \) or \( y = \frac{k}{x} \), find the value of \( k \).

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
x & 20 & 40 & 60 & 80 & 100 \\
\hline
y & \frac{1}{30} & \frac{1}{60} & \frac{1}{90} & \frac{1}{120} & \frac{1}{150} \\
\hline
\end{array}
\]

Possible values of \( k \):

- \( \circ \, k = \frac{3}{2} \)

- \( \circ \, k = \frac{5}{4} \)

- \( \circ \, k = \frac{1}{20} \)

- \( \circ \, k = \frac{2}{3} \)

- \( \circ \, k = \frac{1}{10} \)
Transcribed Image Text:After determining whether the variation model below is of the form \( y = kx \) or \( y = \frac{k}{x} \), find the value of \( k \). \[ \begin{array}{|c|c|c|c|c|c|} \hline x & 20 & 40 & 60 & 80 & 100 \\ \hline y & \frac{1}{30} & \frac{1}{60} & \frac{1}{90} & \frac{1}{120} & \frac{1}{150} \\ \hline \end{array} \] Possible values of \( k \): - \( \circ \, k = \frac{3}{2} \) - \( \circ \, k = \frac{5}{4} \) - \( \circ \, k = \frac{1}{20} \) - \( \circ \, k = \frac{2}{3} \) - \( \circ \, k = \frac{1}{10} \)
**Direct Variation Model**

Use the given value of \( k \) to complete the table for the direct variation model:

\[ y = kx^2. \]

**Instructions:**

1. Use the value of \( k = 1 \).
2. Complete the table with the given \( x \) values.
3. Plot the points on a rectangular coordinate system.

**Table:**

| \( x \) |  8  | 10  | 12  | 14  | 16  |
|---------|-----|-----|-----|-----|-----|
| \( y = kx^2 \) |     |     |     |     |     |

**Solution:**

Apply the formula \( y = kx^2 \) with \( k = 1 \) to find the \( y \) values.
- For \( x = 8 \), \( y = 1 \times 8^2 = 64 \)
- For \( x = 10 \), \( y = 1 \times 10^2 = 100 \)
- For \( x = 12 \), \( y = 1 \times 12^2 = 144 \)
- For \( x = 14 \), \( y = 1 \times 14^2 = 196 \)
- For \( x = 16 \), \( y = 1 \times 16^2 = 256 \)

Complete the table as follows:

| \( x \) |  8  | 10  | 12  | 14  | 16  |
|---------|-----|-----|-----|-----|-----|
| \( y = kx^2 \) |  64 | 100 | 144 | 196 | 256 |

**Graphing:**

Plot these points on a graph with \( x \)-axis for values of \( x \) and \( y \)-axis for the corresponding \( y \) values. The plotted points (8, 64), (10, 100), (12, 144), (14, 196), (16, 256) should form a parabola opening upwards.
Transcribed Image Text:**Direct Variation Model** Use the given value of \( k \) to complete the table for the direct variation model: \[ y = kx^2. \] **Instructions:** 1. Use the value of \( k = 1 \). 2. Complete the table with the given \( x \) values. 3. Plot the points on a rectangular coordinate system. **Table:** | \( x \) | 8 | 10 | 12 | 14 | 16 | |---------|-----|-----|-----|-----|-----| | \( y = kx^2 \) | | | | | | **Solution:** Apply the formula \( y = kx^2 \) with \( k = 1 \) to find the \( y \) values. - For \( x = 8 \), \( y = 1 \times 8^2 = 64 \) - For \( x = 10 \), \( y = 1 \times 10^2 = 100 \) - For \( x = 12 \), \( y = 1 \times 12^2 = 144 \) - For \( x = 14 \), \( y = 1 \times 14^2 = 196 \) - For \( x = 16 \), \( y = 1 \times 16^2 = 256 \) Complete the table as follows: | \( x \) | 8 | 10 | 12 | 14 | 16 | |---------|-----|-----|-----|-----|-----| | \( y = kx^2 \) | 64 | 100 | 144 | 196 | 256 | **Graphing:** Plot these points on a graph with \( x \)-axis for values of \( x \) and \( y \)-axis for the corresponding \( y \) values. The plotted points (8, 64), (10, 100), (12, 144), (14, 196), (16, 256) should form a parabola opening upwards.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education