ә) у(2ху + 1)dх — хӑу — 0 b) (х3у3 + 1)dx + x4у?dy %3D 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

show complete solutions

ang
oy dx – x dy
x dy – ydx
= d
y dx –x dy
ydx – x dy
= d
y?
у dx - x dy
xdy – ydx
= d In
xy
xy
Table 1
хdy - ydx
x² + y?
1
y dx – x dy
= d arctan
x² + y*
ydx+ xdy
y dx + x dy
d(In xy)
%3D
ху
xy
y dx + xdy
-1
y dx +x dy
n>1
(ху)""
= d
(ху)"
(n– 1)(xy)"-
ydy + xdx
x² + y°
1
у dy +x dx
x² + y?
=d In(x + y)
ydy + x dx
= d
1
-1
у dy +x dx
n>1
(x² + y°)"°
(x² + y*)"
2(n – 1)(x² + y³)*-!
ay dx + bx dy
(a, b constants)
xly(ay dx + bx dy) = d(xªy")
Transcribed Image Text:ang oy dx – x dy x dy – ydx = d y dx –x dy ydx – x dy = d y? у dx - x dy xdy – ydx = d In xy xy Table 1 хdy - ydx x² + y? 1 y dx – x dy = d arctan x² + y* ydx+ xdy y dx + x dy d(In xy) %3D ху xy y dx + xdy -1 y dx +x dy n>1 (ху)"" = d (ху)" (n– 1)(xy)"- ydy + xdx x² + y° 1 у dy +x dx x² + y? =d In(x + y) ydy + x dx = d 1 -1 у dy +x dx n>1 (x² + y°)"° (x² + y*)" 2(n – 1)(x² + y³)*-! ay dx + bx dy (a, b constants) xly(ay dx + bx dy) = d(xªy")
Solve the following DE's using Integrating Factor by Inspection or by applying Table 1.
a) y(2xy + 1)dx – xdy = 0
b) (x³y³ + 1)dx +x*y²dy = 0
Transcribed Image Text:Solve the following DE's using Integrating Factor by Inspection or by applying Table 1. a) y(2xy + 1)dx – xdy = 0 b) (x³y³ + 1)dx +x*y²dy = 0
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,