**Linear Programming Problem Using the Simplex Method** Maximize \( z = 9x_1 + 8x_2 \) **Subject to constraints:** - \( x_1 + 2x_2 \leq 2 \) - \( 3x_1 + 2x_2 \leq 8 \) - \( 2x_1 + 3x_2 \leq 10 \) - \( x_1 \geq 0 \) - \( x_2 \geq 0 \) **Options:** A. Maximum is 17 when \( x_1 = 1, x_2 = 1 \) B. Maximum is 45 when \( x_1 = 5, x_2 = 0 \) C. Maximum is 16 when \( x_1 = 0, x_2 = 2 \) D. Maximum is 18 when \( x_1 = 2, x_2 = 0 \)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Linear Programming Problem Using the Simplex Method**

Maximize \( z = 9x_1 + 8x_2 \)

**Subject to constraints:**
- \( x_1 + 2x_2 \leq 2 \)
- \( 3x_1 + 2x_2 \leq 8 \)
- \( 2x_1 + 3x_2 \leq 10 \)
- \( x_1 \geq 0 \)
- \( x_2 \geq 0 \)

**Options:**

A. Maximum is 17 when \( x_1 = 1, x_2 = 1 \)

B. Maximum is 45 when \( x_1 = 5, x_2 = 0 \)

C. Maximum is 16 when \( x_1 = 0, x_2 = 2 \)

D. Maximum is 18 when \( x_1 = 2, x_2 = 0 \)
Transcribed Image Text:**Linear Programming Problem Using the Simplex Method** Maximize \( z = 9x_1 + 8x_2 \) **Subject to constraints:** - \( x_1 + 2x_2 \leq 2 \) - \( 3x_1 + 2x_2 \leq 8 \) - \( 2x_1 + 3x_2 \leq 10 \) - \( x_1 \geq 0 \) - \( x_2 \geq 0 \) **Options:** A. Maximum is 17 when \( x_1 = 1, x_2 = 1 \) B. Maximum is 45 when \( x_1 = 5, x_2 = 0 \) C. Maximum is 16 when \( x_1 = 0, x_2 = 2 \) D. Maximum is 18 when \( x_1 = 2, x_2 = 0 \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,