**Find a Non-Trivial Solution of a Matrix Equation** **Problem Statement:** Find a non-trivial solution of the equation \(A\mathbf{x} = \mathbf{0}\), where \[A = \begin{bmatrix} -15 & -3 \\ 30 & 6 \\ -10 & -2 \end{bmatrix}\] **Options:** - \(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\) - \(\begin{bmatrix} -5 \\ 1 \end{bmatrix}\) - \(\begin{bmatrix} 5 \\ -1 \end{bmatrix}\) - \(\begin{bmatrix} 1 \\ -5 \end{bmatrix}\) - \(\begin{bmatrix} 1 \\ 5 \end{bmatrix}\) Choose the correct non-trivial solution from the given options. **Explanation:** In linear algebra, a non-trivial solution to the homogeneous system \(A\mathbf{x} = \mathbf{0}\) is a solution where \(\mathbf{x} \neq \mathbf{0}\). This involves finding a vector \(\mathbf{x}\) which, when multiplied by the matrix \(A\), results in the zero vector. Non-trivial solutions occur when the determinant of \(A\) is zero, indicating that the matrix is singular and has linearly dependent rows or columns. ### Solve the Problem #### Describe all solutions of \( Ax = b \), where \[ A = \begin{bmatrix} 2 & -5 & 3 \\ -2 & 6 & -5 \\ -4 & 7 & 0 \end{bmatrix} \] and \[ b = \begin{bmatrix} -3 \\ 8 \\ -9 \end{bmatrix}. \] #### Describe the general solution in parametric vector form. ### Options: 1. \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7/2 \\ -2 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 11 \\ 5 \\ 0 \end{bmatrix} \] 2. \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 7/2 \\ 2 \\ 1 \end{bmatrix} \] 3. \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -17 \\ 2 \\ 1 \end{bmatrix} \] 4. \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 7/2 \\ 2 \\ 0 \end{bmatrix} \]

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Find a Non-Trivial Solution of a Matrix Equation**

**Problem Statement:**
Find a non-trivial solution of the equation \(A\mathbf{x} = \mathbf{0}\), where 

\[A = \begin{bmatrix}
-15 & -3 \\
30 & 6 \\
-10 & -2
\end{bmatrix}\]

**Options:**

- \(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\)

- \(\begin{bmatrix} -5 \\ 1 \end{bmatrix}\)

- \(\begin{bmatrix} 5 \\ -1 \end{bmatrix}\)

- \(\begin{bmatrix} 1 \\ -5 \end{bmatrix}\)

- \(\begin{bmatrix} 1 \\ 5 \end{bmatrix}\)

Choose the correct non-trivial solution from the given options.

**Explanation:**
In linear algebra, a non-trivial solution to the homogeneous system \(A\mathbf{x} = \mathbf{0}\) is a solution where \(\mathbf{x} \neq \mathbf{0}\). This involves finding a vector \(\mathbf{x}\) which, when multiplied by the matrix \(A\), results in the zero vector. Non-trivial solutions occur when the determinant of \(A\) is zero, indicating that the matrix is singular and has linearly dependent rows or columns.
Transcribed Image Text:**Find a Non-Trivial Solution of a Matrix Equation** **Problem Statement:** Find a non-trivial solution of the equation \(A\mathbf{x} = \mathbf{0}\), where \[A = \begin{bmatrix} -15 & -3 \\ 30 & 6 \\ -10 & -2 \end{bmatrix}\] **Options:** - \(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\) - \(\begin{bmatrix} -5 \\ 1 \end{bmatrix}\) - \(\begin{bmatrix} 5 \\ -1 \end{bmatrix}\) - \(\begin{bmatrix} 1 \\ -5 \end{bmatrix}\) - \(\begin{bmatrix} 1 \\ 5 \end{bmatrix}\) Choose the correct non-trivial solution from the given options. **Explanation:** In linear algebra, a non-trivial solution to the homogeneous system \(A\mathbf{x} = \mathbf{0}\) is a solution where \(\mathbf{x} \neq \mathbf{0}\). This involves finding a vector \(\mathbf{x}\) which, when multiplied by the matrix \(A\), results in the zero vector. Non-trivial solutions occur when the determinant of \(A\) is zero, indicating that the matrix is singular and has linearly dependent rows or columns.
### Solve the Problem

#### Describe all solutions of \( Ax = b \), where
\[ A = \begin{bmatrix} 2 & -5 & 3 \\ -2 & 6 & -5 \\ -4 & 7 & 0 \end{bmatrix} \]
and
\[ b = \begin{bmatrix} -3 \\ 8 \\ -9 \end{bmatrix}. \]

#### Describe the general solution in parametric vector form.

### Options:
1. 
\[ 
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7/2 \\ -2 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 11 \\ 5 \\ 0 \end{bmatrix} 
\]

2. 
\[ 
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 7/2 \\ 2 \\ 1 \end{bmatrix} 
\]

3. 
\[ 
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -17 \\ 2 \\ 1 \end{bmatrix} 
\]

4. 
\[ 
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 7/2 \\ 2 \\ 0 \end{bmatrix} 
\]
Transcribed Image Text:### Solve the Problem #### Describe all solutions of \( Ax = b \), where \[ A = \begin{bmatrix} 2 & -5 & 3 \\ -2 & 6 & -5 \\ -4 & 7 & 0 \end{bmatrix} \] and \[ b = \begin{bmatrix} -3 \\ 8 \\ -9 \end{bmatrix}. \] #### Describe the general solution in parametric vector form. ### Options: 1. \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7/2 \\ -2 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 11 \\ 5 \\ 0 \end{bmatrix} \] 2. \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 7/2 \\ 2 \\ 1 \end{bmatrix} \] 3. \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -17 \\ 2 \\ 1 \end{bmatrix} \] 4. \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 7/2 \\ 2 \\ 0 \end{bmatrix} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,