Supplementary Problems GAMMA FUNCTION F(7) (a) 2 r(4) r(3) r(3) T(3/2) (6) T(9/2) 9.28. Evaluate (с) г(1/2) г(8/2) г (5/2). te- dx, e- dz, 9.29. Evaluate (a) (b) (e) S* dz, (b) 9.80. Find (a) (c) 9.31. Show that > 0. 9.32. Prove that l(n) = da, n> 0, L' (a In zj* dz, S' Vin (1/2) dz. 9.33. Evaluate (a) (In x)* dz, (b) (0) 9.34. Evaluate (a) г(-7/2), (ь) г(-1/3). 9.35. Prove that lim r(*) = * where m = 0,1,2, 3, ... Prove that if m is a ponitive integer, r(-m + 1) = (-1)m 2" V 1-3-5... (2m – 1) 9.36. 222 GAMMA, BETA AND OTHER SPECIAL FUNCTIONS 9.37. Prove that r'(1) = e-- In z de is a negative number (it is equal to -y, where y is called Euler's constant). Obtain the miscellaneous result 4 on page 211 from the result (4) of Problem 9.23, [Hint: Expand e/(sVn) + ... in a power series and replace the lower limit of the -«.) 9.38. BETA FUNCTION 9.39. Evaluate (a) в(3, 5), (6) в(3/2, 2), (c) B(1/3, 2/3). 9.40. Find (а) x(1- 2)" da, (6) (4- *)3/2 da. 9.41. Evaluate (a) {r(1/4)} dy J. Tai-y 9,42. Prove that %3D 9.43. Evaluate (a) Bin e con e de, (b) cor e de. 9.44. Evaluate (a) sins e de, (b) cos e sin? e de. 9.45. Prove that Vtan e de = z/y2. z dz y dy S, , N 9.46. Prove that (a) (b)
Supplementary Problems GAMMA FUNCTION F(7) (a) 2 r(4) r(3) r(3) T(3/2) (6) T(9/2) 9.28. Evaluate (с) г(1/2) г(8/2) г (5/2). te- dx, e- dz, 9.29. Evaluate (a) (b) (e) S* dz, (b) 9.80. Find (a) (c) 9.31. Show that > 0. 9.32. Prove that l(n) = da, n> 0, L' (a In zj* dz, S' Vin (1/2) dz. 9.33. Evaluate (a) (In x)* dz, (b) (0) 9.34. Evaluate (a) г(-7/2), (ь) г(-1/3). 9.35. Prove that lim r(*) = * where m = 0,1,2, 3, ... Prove that if m is a ponitive integer, r(-m + 1) = (-1)m 2" V 1-3-5... (2m – 1) 9.36. 222 GAMMA, BETA AND OTHER SPECIAL FUNCTIONS 9.37. Prove that r'(1) = e-- In z de is a negative number (it is equal to -y, where y is called Euler's constant). Obtain the miscellaneous result 4 on page 211 from the result (4) of Problem 9.23, [Hint: Expand e/(sVn) + ... in a power series and replace the lower limit of the -«.) 9.38. BETA FUNCTION 9.39. Evaluate (a) в(3, 5), (6) в(3/2, 2), (c) B(1/3, 2/3). 9.40. Find (а) x(1- 2)" da, (6) (4- *)3/2 da. 9.41. Evaluate (a) {r(1/4)} dy J. Tai-y 9,42. Prove that %3D 9.43. Evaluate (a) Bin e con e de, (b) cor e de. 9.44. Evaluate (a) sins e de, (b) cos e sin? e de. 9.45. Prove that Vtan e de = z/y2. z dz y dy S, , N 9.46. Prove that (a) (b)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Help me number 9.44. Doing step by step please. Thank you

Transcribed Image Text:Supplementary Problems
GAMMA FUNCTION
F(7)
(a)
2 r(4) r(3)
r(3) T(3/2)
(6)
T(9/2)
9.28.
Evaluate
(с) г(1/2) г(8/2) г (5/2).
te- dx,
e- dz,
9.29.
Evaluate
(a)
(b)
(e)
S* dz, (b)
9.80.
Find
(a)
(c)
9.31.
Show that
> 0.
9.32.
Prove that
l(n) =
da, n> 0,
L' (a In zj* dz,
S' Vin (1/2) dz.
9.33.
Evaluate
(a)
(In x)* dz, (b)
(0)
9.34.
Evaluate
(a) г(-7/2), (ь) г(-1/3).
9.35.
Prove that
lim r(*) = * where m = 0,1,2, 3, ...
Prove that if m is a ponitive integer, r(-m + 1) =
(-1)m 2" V
1-3-5... (2m – 1)
9.36.
222
GAMMA, BETA AND OTHER SPECIAL FUNCTIONS
9.37.
Prove that r'(1) =
e-- In z de is a negative number (it is equal to -y, where y
is called Euler's constant).
Obtain the miscellaneous result 4 on page 211 from the result (4) of Problem 9.23,
[Hint: Expand e/(sVn) + ... in a power series and replace the lower limit of the
-«.)
9.38.
BETA FUNCTION
9.39.
Evaluate (a) в(3, 5), (6) в(3/2, 2),
(c) B(1/3, 2/3).
9.40.
Find
(а)
x(1- 2)" da, (6)
(4- *)3/2 da.
9.41.
Evaluate (a)
{r(1/4)}
dy
J. Tai-y
9,42.
Prove that
%3D
9.43.
Evaluate
(a)
Bin e con e de,
(b)
cor e de.
9.44.
Evaluate (a)
sins e de,
(b)
cos e sin? e de.
9.45.
Prove that
Vtan e de = z/y2.
z dz
y dy
S, , N
9.46.
Prove that
(a)
(b)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

