156 In Problems 11-40 verify that the indicated function is a solution of the given differential equation. Where appropriate, c₁ and c₂ denote constants. (11. 2y' + y = 0; y = e-x/2 12. y' + 4y = 32; y = 8 dy 13. dx 14. dy dt 15. y' 16. dy dx - - 2y = e³x; y = e³x + 10e²x + 20y = 24; y = /-e-20 = 25+ y²; y = 5 tan 5x y = (√x + ₁)², x > 0,₁ >0 17. y' + y = sin x; y = sin x - cos x + 10e-* 18. 2xy dx + (x² + 2y) dy = 0; x²y + y² = C₁ 1 19. x² dy + 2xy dx = 0; y = -2 X 20. (y')³ + xy' = y; y = x + 1 21. y = 2xy' + y(y')²; y² = c₁(x + 1/4₁)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Can you please help me with question 21
156
In Problems 11-40 verify that the indicated function is a solution of the given
differential equation. Where appropriate, c₁ and c₂ denote constants.
(11. 2y' + y = 0; y = e-x/2
12. y' + 4y = 32; y = 8
dy
13.
dx
14.
dy
dt
15. y'
16.
dy
dx
-
- 2y = e³x; y = e³x + 10e²x
+ 20y = 24; y = /-e-20
=
25+ y²; y = 5 tan 5x
y = (√x + ₁)², x > 0,₁ >0
17. y' + y =
sin x; y = sin x - cos x + 10e-*
18. 2xy dx + (x² + 2y) dy = 0; x²y + y² = C₁
1
19. x² dy + 2xy dx = 0; y = -2
X
20. (y')³ + xy' = y; y = x + 1
21. y = 2xy' + y(y')²; y² = c₁(x + 1/4₁)
Transcribed Image Text:156 In Problems 11-40 verify that the indicated function is a solution of the given differential equation. Where appropriate, c₁ and c₂ denote constants. (11. 2y' + y = 0; y = e-x/2 12. y' + 4y = 32; y = 8 dy 13. dx 14. dy dt 15. y' 16. dy dx - - 2y = e³x; y = e³x + 10e²x + 20y = 24; y = /-e-20 = 25+ y²; y = 5 tan 5x y = (√x + ₁)², x > 0,₁ >0 17. y' + y = sin x; y = sin x - cos x + 10e-* 18. 2xy dx + (x² + 2y) dy = 0; x²y + y² = C₁ 1 19. x² dy + 2xy dx = 0; y = -2 X 20. (y')³ + xy' = y; y = x + 1 21. y = 2xy' + y(y')²; y² = c₁(x + 1/4₁)
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,