**Question 9** Use the drop-down menu to complete the proof of the following statement: \[ 1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6} \] for \( n = 1, 2, \ldots \). (Proof: Base Step) Assume \( P(1) \) is true: \[ 1^2 = \frac{1 \cdot 2 \cdot 3}{6} \] which is true since [dropdown menu]. (Inductive Step) Assume \( P(k) \) is true. So \[ 1^2 + 2^2 + \cdots + k^2 = \frac{k(k+1)(2k+1)}{6} \] is true. We must show that [dropdown menu] is true. Notice \[ 1^2 + 2^2 + \cdots + (k+1)^2 \] \[ = 1^2 + 2^2 + \cdots + [dropdown menu] + (k+1)^2 \] \[ = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \] \[ = [dropdown menu] \left( \frac{k(2k+1)}{6} + (k+1) \right) \] \[ = (k+1) \left( \frac{k(2k+1) + 6(k+1)}{6} \right) \] \[ = (k+1) \left( \frac{2k^2 + 7k + 6}{6} \right) \] \[ = (k+1) \left( \frac{(k+2)(2k+3)}{6} \right) \] \[ = \frac{(k+1)(k+2)(2k+3)}{6} \] Therefore, \( P(k+1) \) is [dropdown menu].
**Question 9** Use the drop-down menu to complete the proof of the following statement: \[ 1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6} \] for \( n = 1, 2, \ldots \). (Proof: Base Step) Assume \( P(1) \) is true: \[ 1^2 = \frac{1 \cdot 2 \cdot 3}{6} \] which is true since [dropdown menu]. (Inductive Step) Assume \( P(k) \) is true. So \[ 1^2 + 2^2 + \cdots + k^2 = \frac{k(k+1)(2k+1)}{6} \] is true. We must show that [dropdown menu] is true. Notice \[ 1^2 + 2^2 + \cdots + (k+1)^2 \] \[ = 1^2 + 2^2 + \cdots + [dropdown menu] + (k+1)^2 \] \[ = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \] \[ = [dropdown menu] \left( \frac{k(2k+1)}{6} + (k+1) \right) \] \[ = (k+1) \left( \frac{k(2k+1) + 6(k+1)}{6} \right) \] \[ = (k+1) \left( \frac{2k^2 + 7k + 6}{6} \right) \] \[ = (k+1) \left( \frac{(k+2)(2k+3)}{6} \right) \] \[ = \frac{(k+1)(k+2)(2k+3)}{6} \] Therefore, \( P(k+1) \) is [dropdown menu].
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
![**Question 9**
Use the drop-down menu to complete the proof of the following statement:
\[
1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}
\]
for \( n = 1, 2, \ldots \).
(Proof: Base Step) Assume \( P(1) \) is true:
\[
1^2 = \frac{1 \cdot 2 \cdot 3}{6}
\]
which is true since [dropdown menu].
(Inductive Step) Assume \( P(k) \) is true. So
\[
1^2 + 2^2 + \cdots + k^2 = \frac{k(k+1)(2k+1)}{6}
\]
is true.
We must show that [dropdown menu] is true. Notice
\[
1^2 + 2^2 + \cdots + (k+1)^2
\]
\[
= 1^2 + 2^2 + \cdots + [dropdown menu] + (k+1)^2
\]
\[
= \frac{k(k+1)(2k+1)}{6} + (k+1)^2
\]
\[
= [dropdown menu] \left( \frac{k(2k+1)}{6} + (k+1) \right)
\]
\[
= (k+1) \left( \frac{k(2k+1) + 6(k+1)}{6} \right)
\]
\[
= (k+1) \left( \frac{2k^2 + 7k + 6}{6} \right)
\]
\[
= (k+1) \left( \frac{(k+2)(2k+3)}{6} \right)
\]
\[
= \frac{(k+1)(k+2)(2k+3)}{6}
\]
Therefore, \( P(k+1) \) is [dropdown menu].](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F79599c56-a340-49a0-b0ff-829b3947a798%2F82d4da3a-1c23-46ee-a4ce-4180c9026b41%2Fp81v68r_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Question 9**
Use the drop-down menu to complete the proof of the following statement:
\[
1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}
\]
for \( n = 1, 2, \ldots \).
(Proof: Base Step) Assume \( P(1) \) is true:
\[
1^2 = \frac{1 \cdot 2 \cdot 3}{6}
\]
which is true since [dropdown menu].
(Inductive Step) Assume \( P(k) \) is true. So
\[
1^2 + 2^2 + \cdots + k^2 = \frac{k(k+1)(2k+1)}{6}
\]
is true.
We must show that [dropdown menu] is true. Notice
\[
1^2 + 2^2 + \cdots + (k+1)^2
\]
\[
= 1^2 + 2^2 + \cdots + [dropdown menu] + (k+1)^2
\]
\[
= \frac{k(k+1)(2k+1)}{6} + (k+1)^2
\]
\[
= [dropdown menu] \left( \frac{k(2k+1)}{6} + (k+1) \right)
\]
\[
= (k+1) \left( \frac{k(2k+1) + 6(k+1)}{6} \right)
\]
\[
= (k+1) \left( \frac{2k^2 + 7k + 6}{6} \right)
\]
\[
= (k+1) \left( \frac{(k+2)(2k+3)}{6} \right)
\]
\[
= \frac{(k+1)(k+2)(2k+3)}{6}
\]
Therefore, \( P(k+1) \) is [dropdown menu].
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra And Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780135163078/9780135163078_smallCoverImage.gif)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
![Introduction to Linear Algebra, Fifth Edition](https://www.bartleby.com/isbn_cover_images/9780980232776/9780980232776_smallCoverImage.gif)
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
![College Algebra (Collegiate Math)](https://www.bartleby.com/isbn_cover_images/9780077836344/9780077836344_smallCoverImage.gif)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education