**Finding the Inverse of a Matrix** In Exercises 7–18, find the inverse of the matrix, if it exists. 7. \[ \begin{bmatrix} 2 & 3 \\ 1 & 2 \\ \end{bmatrix} \] 8. \[ \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ \end{bmatrix} \] 9. \[ \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ \end{bmatrix} \] 10. \[ \begin{bmatrix} 2 & -3 \\ 1 & -1 \\ \end{bmatrix} \] 11. \[ \begin{bmatrix} 1 & 2 \\ 4 & 10 \\ \end{bmatrix} \] 12. \[ \begin{bmatrix} 2 & -2 \\ 2 & -1 \\ \end{bmatrix} \] 13. \[ \begin{bmatrix} 1 & 5 & 4 \\ 1 & 6 & 5 \\ 1 & 7 & 6 \\ \end{bmatrix} \] 14. \[ \begin{bmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 6 \\ \end{bmatrix} \] 15. \[ \begin{bmatrix} 1 & 2 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 5 \\ \end{bmatrix} \] 16. \[ \begin{bmatrix} 2 & 4 & 1 \\ 3 & 6 & 1 \\ 2 & 4 & 2 \\ \end{bmatrix} \] 17. \[ \begin{bmatrix} 2 & 1 & 1 \\ 5 & 2 & 1 \\ 3 & 2 & 1 \\ \end{bmatrix} \] 18. \[ \begin{bmatrix} 5 & 2 & 1 \\ 4 & 2 & 1 \\ 2 & 1 & 0 \\ \end{bmatrix} \]

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
#17
**Finding the Inverse of a Matrix**

In Exercises 7–18, find the inverse of the matrix, if it exists.

7. 
\[
\begin{bmatrix}
2 & 3 \\
1 & 2 \\
\end{bmatrix}
\]

8.
\[
\begin{bmatrix}
1 & 2 \\
1 & 3 \\
\end{bmatrix}
\]

9.
\[
\begin{bmatrix}
1 & 2 \\
2 & 4 \\
\end{bmatrix}
\]

10.
\[
\begin{bmatrix}
2 & -3 \\
1 & -1 \\
\end{bmatrix}
\]

11.
\[
\begin{bmatrix}
1 & 2 \\
4 & 10 \\
\end{bmatrix}
\]

12.
\[
\begin{bmatrix}
2 & -2 \\
2 & -1 \\
\end{bmatrix}
\]

13.
\[
\begin{bmatrix}
1 & 5 & 4 \\
1 & 6 & 5 \\
1 & 7 & 6 \\
\end{bmatrix}
\]

14.
\[
\begin{bmatrix}
3 & 2 & 0 \\
2 & 3 & 0 \\
0 & 0 & 6 \\
\end{bmatrix}
\]

15.
\[
\begin{bmatrix}
1 & 2 & 4 \\
1 & 3 & 6 \\
1 & 2 & 5 \\
\end{bmatrix}
\]

16.
\[
\begin{bmatrix}
2 & 4 & 1 \\
3 & 6 & 1 \\
2 & 4 & 2 \\
\end{bmatrix}
\]

17.
\[
\begin{bmatrix}
2 & 1 & 1 \\
5 & 2 & 1 \\
3 & 2 & 1 \\
\end{bmatrix}
\]

18.
\[
\begin{bmatrix}
5 & 2 & 1 \\
4 & 2 & 1 \\
2 & 1 & 0 \\
\end{bmatrix}
\]
Transcribed Image Text:**Finding the Inverse of a Matrix** In Exercises 7–18, find the inverse of the matrix, if it exists. 7. \[ \begin{bmatrix} 2 & 3 \\ 1 & 2 \\ \end{bmatrix} \] 8. \[ \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ \end{bmatrix} \] 9. \[ \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ \end{bmatrix} \] 10. \[ \begin{bmatrix} 2 & -3 \\ 1 & -1 \\ \end{bmatrix} \] 11. \[ \begin{bmatrix} 1 & 2 \\ 4 & 10 \\ \end{bmatrix} \] 12. \[ \begin{bmatrix} 2 & -2 \\ 2 & -1 \\ \end{bmatrix} \] 13. \[ \begin{bmatrix} 1 & 5 & 4 \\ 1 & 6 & 5 \\ 1 & 7 & 6 \\ \end{bmatrix} \] 14. \[ \begin{bmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 6 \\ \end{bmatrix} \] 15. \[ \begin{bmatrix} 1 & 2 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 5 \\ \end{bmatrix} \] 16. \[ \begin{bmatrix} 2 & 4 & 1 \\ 3 & 6 & 1 \\ 2 & 4 & 2 \\ \end{bmatrix} \] 17. \[ \begin{bmatrix} 2 & 1 & 1 \\ 5 & 2 & 1 \\ 3 & 2 & 1 \\ \end{bmatrix} \] 18. \[ \begin{bmatrix} 5 & 2 & 1 \\ 4 & 2 & 1 \\ 2 & 1 & 0 \\ \end{bmatrix} \]
Expert Solution
Step 1

17.

The given matrix is

                                       A=112310-203

The inverse of the above matrix will exists if det (A)0.

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,