**Problem 4: Linear Independence of Vectors** Verify whether the vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\) are linearly independent. If yes, then find the determinant of the matrix with \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\) as rows. If not, then find linearly independent vectors that span the same linear space as \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\). **Question a.** \[ \vec{v}_1 = (1, 0, -1, 0), \] \[ \vec{v}_2 = (0, 1, 0, 1), \] \[ \vec{v}_3 = (1, 0, -1, 1), \] \[ \vec{v}_4 = (0, 1, 0, -1). \] **Question b.** \[ \vec{v}_1 = (1, 1, 0, 0), \] \[ \vec{v}_2 = (1, 0, -1, 0), \] \[ \vec{v}_3 = (0, 1, 0, -1), \] \[ \vec{v}_4 = (0, 0, 1, 1). \]

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Verify whether vectors ~v1, ~v2, ~v3, ~v4 are linearly independent. If yes
then find the determinant of the matrix with ~v1, ~v2, ~v3, ~v4 as rows. If not
then find linearly independent vectors that span the same linear space as
~v1, ~v2, ~v3, ~v4. 

Question a)

v1=(1, 0, −1, 0),v2=(0, 1, 0, 1),v3=(1, 0, −1, 1) v4=(0, 1, 0, −1)

Question b)

~v1=(1, 1, 0, 0) , v2 = (1, 0, −1, 0),v3 = (0, 1, 0, −1),v4 = (0, 0, 1, 1).

**Problem 4: Linear Independence of Vectors**

Verify whether the vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\) are linearly independent. If yes, then find the determinant of the matrix with \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\) as rows. If not, then find linearly independent vectors that span the same linear space as \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\).

**Question a.**

\[
\vec{v}_1 = (1, 0, -1, 0),
\]

\[
\vec{v}_2 = (0, 1, 0, 1),
\]

\[
\vec{v}_3 = (1, 0, -1, 1),
\]

\[
\vec{v}_4 = (0, 1, 0, -1).
\]

**Question b.**

\[
\vec{v}_1 = (1, 1, 0, 0),
\]

\[
\vec{v}_2 = (1, 0, -1, 0),
\]

\[
\vec{v}_3 = (0, 1, 0, -1),
\]

\[
\vec{v}_4 = (0, 0, 1, 1).
\]
Transcribed Image Text:**Problem 4: Linear Independence of Vectors** Verify whether the vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\) are linearly independent. If yes, then find the determinant of the matrix with \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\) as rows. If not, then find linearly independent vectors that span the same linear space as \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\). **Question a.** \[ \vec{v}_1 = (1, 0, -1, 0), \] \[ \vec{v}_2 = (0, 1, 0, 1), \] \[ \vec{v}_3 = (1, 0, -1, 1), \] \[ \vec{v}_4 = (0, 1, 0, -1). \] **Question b.** \[ \vec{v}_1 = (1, 1, 0, 0), \] \[ \vec{v}_2 = (1, 0, -1, 0), \] \[ \vec{v}_3 = (0, 1, 0, -1), \] \[ \vec{v}_4 = (0, 0, 1, 1). \]
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,