To evaluate the integral O of du √a² + u² u² du udu √a + bu Answer: u = What is the function u? What is du? Answer: du Answer: I = s = ln (u + √u²+ a²) + C 2dx 16+ 4x² 2dx √16+4x² which of the following formulas can be used? 2 36² 2 (3b²u²-4abu +8a²2) √a+bu + C 1563 (bu-2a)√a + bu + C Find the value(s) of a and b (if appropriate), and use the formula to evaluate the integral. [Use the letter 'C' for an arbitrary constant.] dx

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
To evaluate the integral
O
of
du
√a² + u²
u² du
udu
√a + bu
Answer: u =
What is the function u?
What is du?
Answer: du
Answer:
I
=
s
= ln (u + √u²+ a²) + C
2dx
16+ 4x²
2dx
√16+4x²
which of the following formulas can be used?
2
36²
2 (3b²u²-4abu +8a²2) √a+bu + C
1563
(bu-2a)√a + bu + C
Find the value(s) of a and b (if appropriate), and use the formula to evaluate the integral. [Use the letter
'C' for an arbitrary constant.]
dx
Transcribed Image Text:To evaluate the integral O of du √a² + u² u² du udu √a + bu Answer: u = What is the function u? What is du? Answer: du Answer: I = s = ln (u + √u²+ a²) + C 2dx 16+ 4x² 2dx √16+4x² which of the following formulas can be used? 2 36² 2 (3b²u²-4abu +8a²2) √a+bu + C 1563 (bu-2a)√a + bu + C Find the value(s) of a and b (if appropriate), and use the formula to evaluate the integral. [Use the letter 'C' for an arbitrary constant.] dx
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,