Advance Statistics and DOL 01 (90%): Use the below experimental regions information and the data given in the below table to run and analyze the Yield of reactor presented below: Factors; Response: Temperature (°C): (150, 250) Pressure (bar): (1.5, 10) Flow Rate (L/min): (10, 30) Yield (%): Hypothetical yield data for each combination of factors. Use 2 factorial, full factorial, Central Composite, and Box-Behnken designs to construct the design tables that are required to run the experiments (real and coded). Then analyze the results using MINITAB software to show the regression model for you think is the Yield and most effective parameters and interaction. Which design do the giving best model fitting based on your results? (Note; use 3 center point). 02 (10%): Use the Hypothetical yield data shown in the below Table to find the variance and standard deviation and the median. Hypothetical Yield Data Run Temperature (°C) Pressure (bar) Flow Rate (L/min) Yield (%) 1 150 1 10 65 2 150 1 20 68 30 70 3 150 4 150 5 10 75 5 150 5 20 78 6 150 5 30 80 7 150 10 10 70 8 150 10 20 73 9 150 10 30 76 10 200 I 10 68 11 200 20 72 12 200 30 74 13 200 5 10 80 14 200 S 20 83 15 200 5 30 85 16 200 10 10 77 17 200 10 20 80 18 200 10 30 82 19 250 I 10 70 20 250 20 74 21 250 30 76 22 250 TO 85 23 250 S 20 88 24 250 5 30 90 25 250 10 10 80 26 250 10 20 83 27 250 10 30 85

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Question
Advance Statistics and DOL
01 (90%): Use the below experimental regions information and the data given in the
below table to run and analyze the Yield of reactor presented below:
Factors;
Response:
Temperature (°C): (150, 250)
Pressure (bar): (1.5, 10)
Flow Rate (L/min): (10, 30)
Yield (%): Hypothetical yield data for each combination of factors.
Use 2 factorial, full factorial, Central Composite, and Box-Behnken designs to
construct the design tables that are required to run the experiments (real and coded).
Then analyze the results using MINITAB software to show the regression model for
you think is
the Yield and most effective parameters and interaction. Which design do
the giving best model fitting based on your results? (Note; use 3 center point).
02 (10%): Use the Hypothetical yield data shown in the below Table to find the
variance and standard deviation and the median.
Hypothetical Yield Data
Run Temperature (°C)
Pressure (bar)
Flow Rate (L/min) Yield (%)
1
150
1
10
65
2
150
1
20
68
30
70
3
150
4
150
5
10
75
5
150
5
20
78
6
150
5
30
80
7
150
10
10
70
8
150
10
20
73
9
150
10
30
76
10
200
I
10
68
11
200
20
72
12
200
30
74
13
200
5
10
80
14
200
S
20
83
15
200
5
30
85
16
200
10
10
77
17
200
10
20
80
18
200
10
30
82
19
250
I
10
70
20
250
20
74
21
250
30
76
22
250
TO
85
23
250
S
20
88
24
250
5
30
90
25
250
10
10
80
26
250
10
20
83
27
250
10
30
85
Transcribed Image Text:Advance Statistics and DOL 01 (90%): Use the below experimental regions information and the data given in the below table to run and analyze the Yield of reactor presented below: Factors; Response: Temperature (°C): (150, 250) Pressure (bar): (1.5, 10) Flow Rate (L/min): (10, 30) Yield (%): Hypothetical yield data for each combination of factors. Use 2 factorial, full factorial, Central Composite, and Box-Behnken designs to construct the design tables that are required to run the experiments (real and coded). Then analyze the results using MINITAB software to show the regression model for you think is the Yield and most effective parameters and interaction. Which design do the giving best model fitting based on your results? (Note; use 3 center point). 02 (10%): Use the Hypothetical yield data shown in the below Table to find the variance and standard deviation and the median. Hypothetical Yield Data Run Temperature (°C) Pressure (bar) Flow Rate (L/min) Yield (%) 1 150 1 10 65 2 150 1 20 68 30 70 3 150 4 150 5 10 75 5 150 5 20 78 6 150 5 30 80 7 150 10 10 70 8 150 10 20 73 9 150 10 30 76 10 200 I 10 68 11 200 20 72 12 200 30 74 13 200 5 10 80 14 200 S 20 83 15 200 5 30 85 16 200 10 10 77 17 200 10 20 80 18 200 10 30 82 19 250 I 10 70 20 250 20 74 21 250 30 76 22 250 TO 85 23 250 S 20 88 24 250 5 30 90 25 250 10 10 80 26 250 10 20 83 27 250 10 30 85
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The