Adjusted R R Square R Square .801 .641 564 a. Predictors: (Constant), X6, X5, X4, X3, X2, X1 Model Model 1 Model 1 Model Summary Regressio Residual Total n (Constant) Sum of Squares X1 X2 X3 X4 X5 X6 1.210 .677 1.887 a. Dependent Variable: Temperature change b. Predictors: (Constant), X6, X5, X4, X3, X2, X1 ANOVA B df .667 6 28 34 Unstandardized Coefficients Coefficients Std. Error .070 .108 226 400 -210 080 -086 a. Dependent Variable: Temperature change Std. Error of the Estimate 155526 .098 098 .098 .098 098 098 Mean Square 202 .024 Standardiz ed Coefficient S Beta 162 341 .603 -316 120 -.129 FL 8.335 9.590 1.096 2.300 4.065 -2.131 .811 -.872 Sig. .000⁰ Sig. .000 282 .029 .000 042 424 .390
Adjusted R R Square R Square .801 .641 564 a. Predictors: (Constant), X6, X5, X4, X3, X2, X1 Model Model 1 Model 1 Model Summary Regressio Residual Total n (Constant) Sum of Squares X1 X2 X3 X4 X5 X6 1.210 .677 1.887 a. Dependent Variable: Temperature change b. Predictors: (Constant), X6, X5, X4, X3, X2, X1 ANOVA B df .667 6 28 34 Unstandardized Coefficients Coefficients Std. Error .070 .108 226 400 -210 080 -086 a. Dependent Variable: Temperature change Std. Error of the Estimate 155526 .098 098 .098 .098 098 098 Mean Square 202 .024 Standardiz ed Coefficient S Beta 162 341 .603 -316 120 -.129 FL 8.335 9.590 1.096 2.300 4.065 -2.131 .811 -.872 Sig. .000⁰ Sig. .000 282 .029 .000 042 424 .390
Related questions
Question
interpret the following output and come to a conclusion
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps