Adjacency-lists data structure. The standard graph representation for graphs that are not dense is called the adjacency-lists data structure, where we keep track of all the vertices adjacent to each vertex on a linked list that is associated with that vertex. We maintain an array of lists so that, given a vertex, we can immediately access its list. To implement lists, we use our Bag ADT from Section 1.3 with a linked-list implementation, so that we can add new edges in constant time and iterate through adjacent vertices in constant time per adjacent vertex. The Graph implementation on page 526 is based on this approach, and the figure on the facing page depicts the data structures built by this code for tinyG.txt. To add an edge connecting v and w, we add w to v’s adjacency list and v to w’s adjacency list. Thus, each edge appears twice in the data structure. This Graph implementation achieves the following performance characteristics: ■ Space usage proportional to V + E ■ Constant time to add an edge ■ Time proportional to the degree of v to iterate through vertices adjacent to v (constant time per adjacent vertex processed)

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Adjacency-lists data structure. The standard graph representation for graphs that are
not dense is called the adjacency-lists data structure, where we keep track of all the
vertices adjacent to each vertex on a linked list that is associated with that vertex. We
maintain an array of lists so that, given a vertex, we can immediately access its list. To
implement lists, we use our Bag ADT from Section 1.3 with a linked-list implementation, so that we can add new edges in constant time and iterate through adjacent vertices in constant time per adjacent vertex. The Graph implementation on page 526 is based
on this approach, and the figure on the facing page depicts the data structures built by
this code for tinyG.txt. To add an edge connecting v and w, we add w to v’s adjacency
list and v to w’s adjacency list. Thus, each edge appears twice in the data structure. This
Graph implementation achieves the following performance characteristics:
■ Space usage proportional to V + E
■ Constant time to add an edge
■ Time proportional to the degree of v to iterate through vertices adjacent to v
(constant time per adjacent vertex processed)

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Maximum Flow
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education