Add the two fractions and simplify if possible. Leave your answer in terms of sine and/or cose cos 8 sine + sine cos 8 cos 8+ sin 8 cos sin 0 1 cos 8 sin 8 cosesine sin 8 cos 8
Add the two fractions and simplify if possible. Leave your answer in terms of sine and/or cose cos 8 sine + sine cos 8 cos 8+ sin 8 cos sin 0 1 cos 8 sin 8 cosesine sin 8 cos 8
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Topic: Simplifying Trigonometric Expressions**
### Problem Statement:
Add the two fractions and simplify if possible. Leave your answer in terms of \( \sin \theta \) and/or \( \cos \theta \).
\[ \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta} \]
### Multiple Choice Options:
1. \( \frac{\cos \theta + \sin \theta}{\cos \theta \sin \theta} \)
2. \( 1 \)
3. \( \cos \theta \sin \theta \)
4. \( \sin \theta \cos\theta \)
5. \( \frac{\sin \theta}{\cos \theta} \)
### Explanation:
To add the two fractions \(\frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta} \), we need to find a common denominator.
1. The common denominator of \(\sin \theta\) and \(\cos \theta\) is \( \sin \theta \cos \theta \).
2. Rewriting each fraction with this common denominator:
\[
\frac{\cos \theta \cdot \cos \theta}{\sin \theta \cos \theta} + \frac{\sin \theta \cdot \sin \theta}{\sin \theta \cos \theta}
\]
This simplifies to:
\[
\frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta \cos \theta}
\]
3. Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \):
\[
\frac{1}{\sin \theta \cos \theta}
\]
Thus, the simplified form of the given problem is \( \frac{1}{\sin \theta \cos \theta} \).
Therefore, the correct answer is:
- Option 2: \( 1 \)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fcccb93a5-bda7-4c84-b750-51d9219067a4%2Fddaaf7bc-2dbc-44dc-84d8-30df5e99eebc%2Fadkhhp_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Topic: Simplifying Trigonometric Expressions**
### Problem Statement:
Add the two fractions and simplify if possible. Leave your answer in terms of \( \sin \theta \) and/or \( \cos \theta \).
\[ \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta} \]
### Multiple Choice Options:
1. \( \frac{\cos \theta + \sin \theta}{\cos \theta \sin \theta} \)
2. \( 1 \)
3. \( \cos \theta \sin \theta \)
4. \( \sin \theta \cos\theta \)
5. \( \frac{\sin \theta}{\cos \theta} \)
### Explanation:
To add the two fractions \(\frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta} \), we need to find a common denominator.
1. The common denominator of \(\sin \theta\) and \(\cos \theta\) is \( \sin \theta \cos \theta \).
2. Rewriting each fraction with this common denominator:
\[
\frac{\cos \theta \cdot \cos \theta}{\sin \theta \cos \theta} + \frac{\sin \theta \cdot \sin \theta}{\sin \theta \cos \theta}
\]
This simplifies to:
\[
\frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta \cos \theta}
\]
3. Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \):
\[
\frac{1}{\sin \theta \cos \theta}
\]
Thus, the simplified form of the given problem is \( \frac{1}{\sin \theta \cos \theta} \).
Therefore, the correct answer is:
- Option 2: \( 1 \)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning