accept a flyer as they pass by follows a Poisson distribution with the rate of u = 4 people per hour. a) What is the probability that it takes more than 10 minutes for the volunteer to give out the first flyer? b) What is the expected number of flyers the volunteer would distribute in 6 hours? c) Suppose the volunteer has 3 flyers left. What is the exptected time it would take to run out of flyers? d) What is the probability that it would take more than an hour to distribute the last 3 flyers?
accept a flyer as they pass by follows a Poisson distribution with the rate of u = 4 people per hour. a) What is the probability that it takes more than 10 minutes for the volunteer to give out the first flyer? b) What is the expected number of flyers the volunteer would distribute in 6 hours? c) Suppose the volunteer has 3 flyers left. What is the exptected time it would take to run out of flyers? d) What is the probability that it would take more than an hour to distribute the last 3 flyers?
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Please write by hand. I can’t understand sometimes when is writing in a computer. Please write by hand if not please do not respond. Attached will be the formula sheet
![3. A volunteer is distributing flyers at a street corner for a comedy show. The number of people who
accept a flyer as they pass by follows a Poisson distribution with the rate of µ = 4 people per hour.
a) What is the probability that it takes more than 10 minutes for the volunteer to give out the first
flyer? e
b) What is the expected number of flyers the volunteer would distribute in 6 hours?
c) Suppose the volunteer has 3 flyers left. What is the exptected time it would take to run out of
flyers?
d) What is the probability that it would take more than an hour to distribute the last 3 flyers?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F404f3a78-f730-4773-ad7b-fe6612b342a7%2F8c32d9c5-f94e-41f7-a917-7385927f7142%2Fw3ydd2_processed.jpeg&w=3840&q=75)
Transcribed Image Text:3. A volunteer is distributing flyers at a street corner for a comedy show. The number of people who
accept a flyer as they pass by follows a Poisson distribution with the rate of µ = 4 people per hour.
a) What is the probability that it takes more than 10 minutes for the volunteer to give out the first
flyer? e
b) What is the expected number of flyers the volunteer would distribute in 6 hours?
c) Suppose the volunteer has 3 flyers left. What is the exptected time it would take to run out of
flyers?
d) What is the probability that it would take more than an hour to distribute the last 3 flyers?
![Axloms of Probablity
Also Note
1. P(8)-1
2. For any event E, 0S P(E)s1
For any two events A and B,
P(A) - P(AN B) + P(ANB)
3. For any two mutually exclusive events,
and
P(EUF) - P(E) + P(F)
P(AN B) - P(A|B)P(B).
Addition Rule
Events A and B are Independent if:
P(EUF) = P(E) + P(F) - P(En F)
P(A|B) = P(A)
Conditional Probablity
or
P(B|A) -
P(ANB) - P(A)P(B).
PLAN)
Bayes' Theorem:
Total Probablity Rule
P(A|B)P(B)
P(B|A) = PLALBPB) + P(AB)P(B")
P(A) - P(A|B)P(B) + P(A|B')P(B')
Similarly,
Similarly,
P(A) -P(A|E,)P(E)) + P(A|E)P(E)+
...+ P(A|E)P(E)
P(B|E)P(E)
P(E|B) - PIBIE PE) + P(BE PE)+...+ P(B\E)P(E.)
Probability Mass and Density Functions
If X is a discrete r.v:
Cumulative Distribution Function
• F(z) = P(X sz)
P(X = 2) = f(z)
• lim,- F() -0
Es(2) =1 (total probability)
• lim,e F(z) = 1
If X is a continuous r.v.:
P(X = z) = 0
• F(z) = " /(v)dy if X is a contimuous r.v.
S(2)dz =1 (total probability)
• F(z) = E,sz f(z) if X is a discrete r.v.
• P(a < X Sb) - F(b) – F(a)
Expected Value and Variance
Expected Value of a Function of a RV
• E[X) = E, z/(z) if X is a discrete r.v.
• E[h(X)] =E. h(x)f(x) if X is a discrete r.v.
• Eh(X)) = h(z)/(z)dz if X is a continu-
• E[X] = z/(z)dr if X is a continuous r.v.
ous r.v.
• Var(X) = E[Xx] – E[X]?
• E(aX + 6) = aEX] + 6
• Var(aX + b) = a?Var(X)
%3D
• Var(X) = E[(X - E[X])?]
Derivatives and Integrals of Common Functions
• = aea
de
• Sea" dz =
• Sre*dr = e"I- fe*dz = ze" - e (using integration by parts)
dinz
• S !dz = In(z)
Common Discrete Distributions
• X - Bernoulli(p),
if z = 1;
f(z) =
|1-p ifz 0' EX] = p, Var(X) = p(1 – p).
• X- Geometric(p),
f(2) = (1– p)--'p, z E {1,2,..}, E[X] = }, Var(X) = .
Geometric Series: Eg = , for 0 < q < 1
• X - Binomial(n, p),
f(z) = (E) (1– p)"-p*, I € {0, 1,.., n},
E[X] = np, Var(X) = mp(1 – p).
%3D
• X- Negative Binomial(r, p),
f(z) = ()(1 – p)*-"p", E[X] = ;, 1 € {r,r+1,..}, Var(X) = p),
%3D
• X - Hypergeometric(n, M, N),
f(z) =
,
E[X] = n, Var(X) = N=n(1-).
%3D
• X ~ Poisson(At),
f(z) = A0", z e {0, 1, .}, E[X] = At, Var(X) = At.
Common Continuous Distributions
• X - Exponential(A),
f(z) = de-A, z E [0, 00) E[X] = }, Var(X)= .
• X- Erlang(r, A),
f(z) = A' , zE (0, 00), E[X] = 5, Var(X) = .
Suppose that Duke Energy mu](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F404f3a78-f730-4773-ad7b-fe6612b342a7%2F8c32d9c5-f94e-41f7-a917-7385927f7142%2Fagu4bzm_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Axloms of Probablity
Also Note
1. P(8)-1
2. For any event E, 0S P(E)s1
For any two events A and B,
P(A) - P(AN B) + P(ANB)
3. For any two mutually exclusive events,
and
P(EUF) - P(E) + P(F)
P(AN B) - P(A|B)P(B).
Addition Rule
Events A and B are Independent if:
P(EUF) = P(E) + P(F) - P(En F)
P(A|B) = P(A)
Conditional Probablity
or
P(B|A) -
P(ANB) - P(A)P(B).
PLAN)
Bayes' Theorem:
Total Probablity Rule
P(A|B)P(B)
P(B|A) = PLALBPB) + P(AB)P(B")
P(A) - P(A|B)P(B) + P(A|B')P(B')
Similarly,
Similarly,
P(A) -P(A|E,)P(E)) + P(A|E)P(E)+
...+ P(A|E)P(E)
P(B|E)P(E)
P(E|B) - PIBIE PE) + P(BE PE)+...+ P(B\E)P(E.)
Probability Mass and Density Functions
If X is a discrete r.v:
Cumulative Distribution Function
• F(z) = P(X sz)
P(X = 2) = f(z)
• lim,- F() -0
Es(2) =1 (total probability)
• lim,e F(z) = 1
If X is a continuous r.v.:
P(X = z) = 0
• F(z) = " /(v)dy if X is a contimuous r.v.
S(2)dz =1 (total probability)
• F(z) = E,sz f(z) if X is a discrete r.v.
• P(a < X Sb) - F(b) – F(a)
Expected Value and Variance
Expected Value of a Function of a RV
• E[X) = E, z/(z) if X is a discrete r.v.
• E[h(X)] =E. h(x)f(x) if X is a discrete r.v.
• Eh(X)) = h(z)/(z)dz if X is a continu-
• E[X] = z/(z)dr if X is a continuous r.v.
ous r.v.
• Var(X) = E[Xx] – E[X]?
• E(aX + 6) = aEX] + 6
• Var(aX + b) = a?Var(X)
%3D
• Var(X) = E[(X - E[X])?]
Derivatives and Integrals of Common Functions
• = aea
de
• Sea" dz =
• Sre*dr = e"I- fe*dz = ze" - e (using integration by parts)
dinz
• S !dz = In(z)
Common Discrete Distributions
• X - Bernoulli(p),
if z = 1;
f(z) =
|1-p ifz 0' EX] = p, Var(X) = p(1 – p).
• X- Geometric(p),
f(2) = (1– p)--'p, z E {1,2,..}, E[X] = }, Var(X) = .
Geometric Series: Eg = , for 0 < q < 1
• X - Binomial(n, p),
f(z) = (E) (1– p)"-p*, I € {0, 1,.., n},
E[X] = np, Var(X) = mp(1 – p).
%3D
• X- Negative Binomial(r, p),
f(z) = ()(1 – p)*-"p", E[X] = ;, 1 € {r,r+1,..}, Var(X) = p),
%3D
• X - Hypergeometric(n, M, N),
f(z) =
,
E[X] = n, Var(X) = N=n(1-).
%3D
• X ~ Poisson(At),
f(z) = A0", z e {0, 1, .}, E[X] = At, Var(X) = At.
Common Continuous Distributions
• X - Exponential(A),
f(z) = de-A, z E [0, 00) E[X] = }, Var(X)= .
• X- Erlang(r, A),
f(z) = A' , zE (0, 00), E[X] = 5, Var(X) = .
Suppose that Duke Energy mu
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman