AABC is similar to AEDC. Find v, w, x, and y. D 128° x Y 49in. B 91in. v 28° 16in. [1] wᵒ E 28in.

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
Question
**Title: Solving Problems Involving Similar Triangles**

**Problem Statement:**
Given that triangle \( \Delta ABC \) is similar to triangle \( \Delta EDC \), find the values of angles \( v \), \( w \), and the side lengths \( x \), and \( y \).

**Diagram Description:**
The diagram provided shows two triangles, \( \Delta ABC \) and \( \Delta EDC \), which are similar to each other. 

- Triangle \( \Delta ABC \):
  - Angle \( \angle BAC = 128^\circ \)
  - Angle \( \angle ACB = v^\circ \)
  - Side \( AB = 49 \) inches
  - Side \( BC = 91 \) inches
  - Side \( AC = x \) inches

- Triangle \( \Delta EDC \):
  - Angle \( \angle DEC = w^\circ \)
  - Angle \( \angle ECD = 28^\circ \)
  - Side \( DE = 28 \) inches
  - Side \( EC = 16 \) inches
  - Side \( DC = y \) inches

The triangles share a common angle \( \angle ACB = \angle ECD \). 

**To Be Determined:**
- \( v = \) \( \_\_\_\_\_\_\_\_\_\_ \)
- \( w = \) \( \_\_\_\_\_\_\_\_\_\_ \)
- \( x = \) \( \_\_\_\_\_\_\_\_\_\_ \) inches
- \( y = \) \( \_\_\_\_\_\_\_\_\_\_ \) inches

**Explanation and Solution:**

Since \( \Delta ABC \) is similar to \( \Delta EDC \), we can use the properties of similar triangles to find the missing values.

1. **Finding \( v \) and \( w \) (Angles):**
   - For \( \Delta ABC \):
     - We already know \( \angle BAC = 128^\circ \)
     - The sum of the angles in any triangle is \( 180^\circ \)
     - Therefore, \( \angle ACB + \angle CBA + \angle BAC = 180^\circ \)
     - So, \( v + 28^\circ + 128^\circ = 180^\circ \)
     - \( v =
Transcribed Image Text:**Title: Solving Problems Involving Similar Triangles** **Problem Statement:** Given that triangle \( \Delta ABC \) is similar to triangle \( \Delta EDC \), find the values of angles \( v \), \( w \), and the side lengths \( x \), and \( y \). **Diagram Description:** The diagram provided shows two triangles, \( \Delta ABC \) and \( \Delta EDC \), which are similar to each other. - Triangle \( \Delta ABC \): - Angle \( \angle BAC = 128^\circ \) - Angle \( \angle ACB = v^\circ \) - Side \( AB = 49 \) inches - Side \( BC = 91 \) inches - Side \( AC = x \) inches - Triangle \( \Delta EDC \): - Angle \( \angle DEC = w^\circ \) - Angle \( \angle ECD = 28^\circ \) - Side \( DE = 28 \) inches - Side \( EC = 16 \) inches - Side \( DC = y \) inches The triangles share a common angle \( \angle ACB = \angle ECD \). **To Be Determined:** - \( v = \) \( \_\_\_\_\_\_\_\_\_\_ \) - \( w = \) \( \_\_\_\_\_\_\_\_\_\_ \) - \( x = \) \( \_\_\_\_\_\_\_\_\_\_ \) inches - \( y = \) \( \_\_\_\_\_\_\_\_\_\_ \) inches **Explanation and Solution:** Since \( \Delta ABC \) is similar to \( \Delta EDC \), we can use the properties of similar triangles to find the missing values. 1. **Finding \( v \) and \( w \) (Angles):** - For \( \Delta ABC \): - We already know \( \angle BAC = 128^\circ \) - The sum of the angles in any triangle is \( 180^\circ \) - Therefore, \( \angle ACB + \angle CBA + \angle BAC = 180^\circ \) - So, \( v + 28^\circ + 128^\circ = 180^\circ \) - \( v =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning