A. y,(x) = Ax + Bx + C, B. y,(x)= Ae", C. yp(x) = A cos 2a +B sin 2x, D. yp(1) = (Ar + B) cos 2x + (Cx + D) sin 2a E. Yp(x) = Axe", and F.y,(x) = e" (A cos 2r + B sin 2x) d'y +4y = x dx? ,2 1. 20 d'y dy + 6- dx? 2. + 8y = e2 3. y" + 4y + 13y = 3 cos 2x 4. y" – 2y' – 15y = e° Cos 2x

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Match the following guess solutions yp for the method od undetermined coefficient with second order non homogeneous linear equations below

A. y,(x) = Ax + Br + C, B. Y,(x) = Ae", c. y,(x) = A cos 2a + B sin 2x,
D. yp(x) = (AT + B) cos 2x + (Cx + D) sin 2x E. y,(x) = Axe", and F.Yp(x) = e (A cos 2x + B sin 2x)
Ae, C. y,() = A cos 2x +B sin 2x,
2x
3
d?y
+4y= x
dr?
1.
20
d²y
dy
+6
+ 8y = e2
dæ
dx?
y" + 4y' + 13y
= 3 cos 2x
4.
y"2y' 15y = e cos 2x
3x
2)
2.
3.
Transcribed Image Text:A. y,(x) = Ax + Br + C, B. Y,(x) = Ae", c. y,(x) = A cos 2a + B sin 2x, D. yp(x) = (AT + B) cos 2x + (Cx + D) sin 2x E. y,(x) = Axe", and F.Yp(x) = e (A cos 2x + B sin 2x) Ae, C. y,() = A cos 2x +B sin 2x, 2x 3 d?y +4y= x dr? 1. 20 d²y dy +6 + 8y = e2 dæ dx? y" + 4y' + 13y = 3 cos 2x 4. y"2y' 15y = e cos 2x 3x 2) 2. 3.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Transcendental Expression
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,