a. Which of the following sets of equations could trace the circle x +y = a once clockwise, starting at (a,0)? O A. X= - a cos t, y =a sin t, 0 sts2n O B. X= acos t, y= - asin t, 0sts2r OC. x-asin t, y = a cos t, 0sts2n O D. x= - a sin t, y= - a cos t, 0 sts2n b. Which of the following sets of equations could trace the circle x +y = a once counterclockwise, starting at (a,0)? %3D O A. X= - a cos t, y = -a sin t, 0sts 2n O B. x=a cos t, y = a sin t, 0sts2n O C. x= - asin t, y= a cos t, 0 sts2n O D. x= a sin t, y = - a cos t, 0sts2r c. Which of the following sets of equations could trace the circle x +y = a four times clockwise, starting at (a,0)? O A. X=acos t, y= - a sin t, 0sts8r B. x= a sin t, y = a cos t, 0sts 2n OC. x= - a sin t, y= - a cos t, 0sts4r O D. x=acos t, y= - a sin t, 0 sts6T
a. Which of the following sets of equations could trace the circle x +y = a once clockwise, starting at (a,0)? O A. X= - a cos t, y =a sin t, 0 sts2n O B. X= acos t, y= - asin t, 0sts2r OC. x-asin t, y = a cos t, 0sts2n O D. x= - a sin t, y= - a cos t, 0 sts2n b. Which of the following sets of equations could trace the circle x +y = a once counterclockwise, starting at (a,0)? %3D O A. X= - a cos t, y = -a sin t, 0sts 2n O B. x=a cos t, y = a sin t, 0sts2n O C. x= - asin t, y= a cos t, 0 sts2n O D. x= a sin t, y = - a cos t, 0sts2r c. Which of the following sets of equations could trace the circle x +y = a four times clockwise, starting at (a,0)? O A. X=acos t, y= - a sin t, 0sts8r B. x= a sin t, y = a cos t, 0sts 2n OC. x= - a sin t, y= - a cos t, 0sts4r O D. x=acos t, y= - a sin t, 0 sts6T
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Find parametric equations and a parameter interval for the motion of a particle that starts at \((a,0)\) and traces the circle \(x^2 + y^2 = a^2\).
a. Which of the following sets of equations could trace the circle \(x^2 + y^2 = a^2\) once clockwise, starting at \((a,0)\)?
- A. \(x = a\cos t,\ y = a\sin t,\ 0 \leq t \leq 2\pi\)
- B. \(x = a\cos t,\ y = -a\sin t,\ 0 \leq t \leq 2\pi\)
- C. \(x = a\sin t,\ y = a\cos t,\ 0 \leq t \leq 2\pi\)
- **D. \(x = -a\sin t,\ y = -a\cos t,\ 0 \leq t \leq 2\pi\)**
b. Which of the following sets of equations could trace the circle \(x^2 + y^2 = a^2\) once counterclockwise, starting at \((a,0)\)?
- A. \(x = -a\cos t,\ y = -a\sin t,\ 0 \leq t \leq 2\pi\)
- B. \(x = a\cos t,\ y = a\sin t,\ 0 \leq t \leq 2\pi\)
- **C. \(x = -a\sin t,\ y = a\cos t,\ 0 \leq t \leq 2\pi\)**
- D. \(x = a\sin t,\ y = -a\cos t,\ 0 \leq t \leq 2\pi\)
c. Which of the following sets of equations could trace the circle \(x^2 + y^2 = a^2\) four times clockwise, starting at \((a,0)\)?
- A. \(x = a\cos t,\ y = -a\sin t,\ 0 \leq t \leq 8\pi\)
- B. \(x = a\sin t,\ y = a\cos t,\ 0 \leq t \leq 2](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2ff04b14-418e-4fdc-a757-7913006fa0e0%2F1699013f-b8e3-40b0-bb1d-81292ad1a12f%2Fdsi6tw8_processed.png&w=3840&q=75)
Transcribed Image Text:Find parametric equations and a parameter interval for the motion of a particle that starts at \((a,0)\) and traces the circle \(x^2 + y^2 = a^2\).
a. Which of the following sets of equations could trace the circle \(x^2 + y^2 = a^2\) once clockwise, starting at \((a,0)\)?
- A. \(x = a\cos t,\ y = a\sin t,\ 0 \leq t \leq 2\pi\)
- B. \(x = a\cos t,\ y = -a\sin t,\ 0 \leq t \leq 2\pi\)
- C. \(x = a\sin t,\ y = a\cos t,\ 0 \leq t \leq 2\pi\)
- **D. \(x = -a\sin t,\ y = -a\cos t,\ 0 \leq t \leq 2\pi\)**
b. Which of the following sets of equations could trace the circle \(x^2 + y^2 = a^2\) once counterclockwise, starting at \((a,0)\)?
- A. \(x = -a\cos t,\ y = -a\sin t,\ 0 \leq t \leq 2\pi\)
- B. \(x = a\cos t,\ y = a\sin t,\ 0 \leq t \leq 2\pi\)
- **C. \(x = -a\sin t,\ y = a\cos t,\ 0 \leq t \leq 2\pi\)**
- D. \(x = a\sin t,\ y = -a\cos t,\ 0 \leq t \leq 2\pi\)
c. Which of the following sets of equations could trace the circle \(x^2 + y^2 = a^2\) four times clockwise, starting at \((a,0)\)?
- A. \(x = a\cos t,\ y = -a\sin t,\ 0 \leq t \leq 8\pi\)
- B. \(x = a\sin t,\ y = a\cos t,\ 0 \leq t \leq 2
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)