a. Which graph below shows a scatter plot for these data? O A. O B. OD. Ay 20- Ay 20- 10+ 10- 10+ 04 10 10- There appears to be linear relationship between x and y. b. What is the correlation coefficient for these sample data? =(Round to two decimal places as needed.) c. What are the appropriate hypotheses to test for a negative correlation coefficient? O A. Ho: ps0 HA: p>0 O B. Ho: p+0 Hai p= 0 O C. H ρ20 HẠi p<0 O D. Ho: p<0 Ha: p20 O E. Ho: p>0 HA: ps0 O F. Ho: p= 0 HA: p#0 Calculate the t-test statistic for correlation. t= (Round to four decimal places as needed.) Determine the critical value(s) for the rejection region for the test statistic t. Select the correct choice below and fill in the answer box to complete your choice. (Round to four decimal places as needed.) OA. to.05 = - OB. to.05 OC. to.025 Since the test statistic V in the rejection region, the null hypothesis. The data V support the contention that the population correlatic coefficient is negative.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Topic Video
Question

Make sure to do the rounding and double check the Answers please.

A random sample of two variables, x and y, produced the observations
shown to the right.
11
9
20
5
a. Develop a scatter plot for the two variables and describe what
relationship, if any, exists.
b. Compute the correlation coefficient for these sample data.
c. Test to determine whether the population correlation coefficient is
negative. Use a significance level of 0.05 for the hypothesis test.
13
8
17
16
6
15
6
19
14
Click the icon to view the t-distribution table.
a. Which graph below shows a scatter plot for these data?
OA.
O B.
OC.
OD.
AY
10+
Ay
20-
20-
10-
0-
10
10-
10-
0-
10
20
10
10
There appears to be
linear relationship between x and y.
b. What is the correlation coefficient for these sample data?
(Round to two decimal places as needed.)
r=
c. What are the appropriate hypotheses to test for a negative correlation coefficient?
O A. Ho: ps0
O B. Ho: p+0
HA: p= 0
HẠ p>0
OC. Họ: p20
HA p<0
O D. Ho: p<0
HA: p20
O E. Ho: p>0
HA: ps0
Ο F. H0 ρ=0
HA: p+0
Calculate the t-test statistic for correlation.
t=
(Round to four decimal places as needed.)
Determine the critical value(s) for the rejection region for the test statistic t. Select the correct choice below and fill in the answer box to complete your choice.
(Round to four decimal places as needed.)
O A.
to.05 =
O B. to.05 =
O C. to.025 = ±
Since the test statistic
V in the rejection region,
V the null hypothesis. The data
V support the contention that the population correlation
coefficient is negative.
Transcribed Image Text:A random sample of two variables, x and y, produced the observations shown to the right. 11 9 20 5 a. Develop a scatter plot for the two variables and describe what relationship, if any, exists. b. Compute the correlation coefficient for these sample data. c. Test to determine whether the population correlation coefficient is negative. Use a significance level of 0.05 for the hypothesis test. 13 8 17 16 6 15 6 19 14 Click the icon to view the t-distribution table. a. Which graph below shows a scatter plot for these data? OA. O B. OC. OD. AY 10+ Ay 20- 20- 10- 0- 10 10- 10- 0- 10 20 10 10 There appears to be linear relationship between x and y. b. What is the correlation coefficient for these sample data? (Round to two decimal places as needed.) r= c. What are the appropriate hypotheses to test for a negative correlation coefficient? O A. Ho: ps0 O B. Ho: p+0 HA: p= 0 HẠ p>0 OC. Họ: p20 HA p<0 O D. Ho: p<0 HA: p20 O E. Ho: p>0 HA: ps0 Ο F. H0 ρ=0 HA: p+0 Calculate the t-test statistic for correlation. t= (Round to four decimal places as needed.) Determine the critical value(s) for the rejection region for the test statistic t. Select the correct choice below and fill in the answer box to complete your choice. (Round to four decimal places as needed.) O A. to.05 = O B. to.05 = O C. to.025 = ± Since the test statistic V in the rejection region, V the null hypothesis. The data V support the contention that the population correlation coefficient is negative.
PROBABILITIES (OR AREAS UNDER 1-DISTRIBUTION CURVE)
Conf. Level
0.1
0.3
0.5
0.7
0.8
0.9
0.95
0.98
0.99 Conf. Level
One Tail
Two Tails
0.45
0.35
0.25
0.15
0.1
0.05
0.025
0.01
0.005 One Tail
0.9
0.7
0.5
0.3
0.2
0.1
0.05
0.02
0.01 Two Tails
df
Values of t
df
1.0000
0.8165
1.9626
1.3862
1.2498
1
0.1584
0.5095
3.0777
6.3137 12.7062 31.8210 63.6559
1
6.9645
4.5407
9.9250
5.8408
0.1421
0.4447
1.8856
2.9200
2.3534
4.3027
2
3
0.1366
0.4242
0.7649
1.6377
3.1824
3
0.4142
0.4082
0.7407
0.7267
4
0.1338
1.1896
1.5332
2.1318
2.7765
3.7469
4.6041
4
0.1322
1.1558
1.4759
2.0150
2.5706
3.3649
4.0321
5
2.4469
2.3646
2.3060
2.2622
3.1427
2.9979
2.8965
3.7074
3.4995
0.1311
0.4043
0.7176
1.1342
1.4398
1.9432
0.4015
0.3995
0.3979
1.1192
1.1081
1.0997
1.0931
7
0.1303
0,7111
1.4149
1.8946
7
8.
0.1297
0.7064
1.3968
1.8595
3.3554
8
0.1293
0.1289
9
0.7027
1.3830
1.8331
2.8214
3.2498
9
10
0.3966
0.6998
1.3722
1,8125
2.2281
2.7638
3.1693
10
0.6974
0.6955
1.3634
1.3562
1,7959
1,7823
2.2010
2.1788
2.1604
11
0.1286
0.3956
1.0877
2.7181
3.1058
11
0.1283
0.1281
3.0545
3.0123
2.9768
12
0.3947
1.0832
2.6810
12
13
0.3940
0.6938
1.0795
1.3502
1.7709
2.6503
13
14
0.1280
0.3933
0.6924
1.0763
1.3450
1.7613
2.1448
2.6245
14
15
0.1278
0.3928
0.6912
1.0735
1.3406
1.7531
2.1315
2.6025
2.9467 15
0.1277
0.1276
1.7459
1.7396
2.1199
2.1098
2.5835
2.5669
2.5524
2.5395
2.5280
2.9208
2.8982
2.8784
16
0,3923
0.6901
1.0711
1.3368
16
1.0690
1.0672
17
0.3919
0.6892
1.3334
17
18
0.1274
0.3915
0.6884
1.3304
1.7341
2.1009
18
19
0.1274
0.3912
0.6876
1.0655
1.3277
1.7291
2.0930
2.8609
19
20
0.1273
0,3909
0.6870
1.0640
1.3253
1.7247
2.0860
2.8453
20
0.3906
1.0627
1.0614
21
1.7207
0.1272
0.1271
0.1271
0.6864
1.3232
2.0796
2.5176
2.8314
21
0.6858
0.6853
0.6848
0.6844
22
0.3904
1.3212
1.7171
2.0739
2,5083
2.8188
22
0.3902
0.3900
1.3195
1.3178
1.3163
23
1.0603
1.7139
2.0687
2.4999
2.8073
23
24
0.1270
1.0593
1.7109
2.0639
2,4922
2.7970 24
25
0.1269
0.3898
1,0584
1.7081
2.0595
2.4851
2.7874
25
0.1269
0.1268
0.1268
0.6840
0.6837
1.0575
1.0567
26
0.3896
1.3150
1.7056
2.0555
2.4786
2,7787
26
27
0.3894
1.3137
1.7033
2.0518
2.4727
2.7707
27
1.7011
1.6991
28
0.3893
1.3125
2,4671
2,4620
2,4573
0.6834
1,0560
2.0484
2.7633
28
1.3114
1.3104
29
0.1268
0.3892
0.6830
1,0553
2.0452
2.7564
29
30
0.1267
0.3890
0.6828
1.0547
1.6973
2.0423
2.7500
30
0.6807
0.6794
0.6786
0.6780
1.6839
1.6759
1.6706
2.02|1
2.0086
2.0003
1.9944
40
0.1265
0.3881
1.0500
1.3031
2,4233
2,7045
40
50
0.1263
0.3875
1.0473
1.2987
2.4033
2.6778
50
0.3872
0,3869
2.3901
2.3808
60
0.1262
1.0455
1.2958
2.6603
60
70
0.1261
1,0442
1.2938
1.2922
1.6669
2.6479
70
80
0.1261
0.3867
0.6776
1.0432
1.6641
1.9901
2,3739
2.6387 80
1.0424
1.0418
90
0.1260
0.3866
0.6772
1.2910
1.6620
1.9867
2.3685
2.6316 90
100
0.1260
0.3864
0.6770
1.2901
1.6602
1.9840
2.3642
2.6259 100
0.1258
0.1257
0.6755
0.6750
0.6745
1.6510
1.6479
1,6449
0.3858
1.2849
1.2832
1.9695
1.9647
1.9600
250
1,0386
2.3414
2.5956 250
500
0.3855
1.0375
2.3338
2.5857 500
0.1257
0.3853
1.0364
1.2816
2.3263
2.5758
Conf. Level
One Tail
Two Tails
0.1
0.45
0.95
0.025
0.3
0.5
0.7
0.8
0.9
0.98
0.99 Conf. Level
0.35
0.25
0.15
0.3
0.1
0.05
0.01
0.005 One Tail
0.9
0.7
0.5
0.2
0.1
0.05
0.02
0.01 Two Tails
Transcribed Image Text:PROBABILITIES (OR AREAS UNDER 1-DISTRIBUTION CURVE) Conf. Level 0.1 0.3 0.5 0.7 0.8 0.9 0.95 0.98 0.99 Conf. Level One Tail Two Tails 0.45 0.35 0.25 0.15 0.1 0.05 0.025 0.01 0.005 One Tail 0.9 0.7 0.5 0.3 0.2 0.1 0.05 0.02 0.01 Two Tails df Values of t df 1.0000 0.8165 1.9626 1.3862 1.2498 1 0.1584 0.5095 3.0777 6.3137 12.7062 31.8210 63.6559 1 6.9645 4.5407 9.9250 5.8408 0.1421 0.4447 1.8856 2.9200 2.3534 4.3027 2 3 0.1366 0.4242 0.7649 1.6377 3.1824 3 0.4142 0.4082 0.7407 0.7267 4 0.1338 1.1896 1.5332 2.1318 2.7765 3.7469 4.6041 4 0.1322 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 5 2.4469 2.3646 2.3060 2.2622 3.1427 2.9979 2.8965 3.7074 3.4995 0.1311 0.4043 0.7176 1.1342 1.4398 1.9432 0.4015 0.3995 0.3979 1.1192 1.1081 1.0997 1.0931 7 0.1303 0,7111 1.4149 1.8946 7 8. 0.1297 0.7064 1.3968 1.8595 3.3554 8 0.1293 0.1289 9 0.7027 1.3830 1.8331 2.8214 3.2498 9 10 0.3966 0.6998 1.3722 1,8125 2.2281 2.7638 3.1693 10 0.6974 0.6955 1.3634 1.3562 1,7959 1,7823 2.2010 2.1788 2.1604 11 0.1286 0.3956 1.0877 2.7181 3.1058 11 0.1283 0.1281 3.0545 3.0123 2.9768 12 0.3947 1.0832 2.6810 12 13 0.3940 0.6938 1.0795 1.3502 1.7709 2.6503 13 14 0.1280 0.3933 0.6924 1.0763 1.3450 1.7613 2.1448 2.6245 14 15 0.1278 0.3928 0.6912 1.0735 1.3406 1.7531 2.1315 2.6025 2.9467 15 0.1277 0.1276 1.7459 1.7396 2.1199 2.1098 2.5835 2.5669 2.5524 2.5395 2.5280 2.9208 2.8982 2.8784 16 0,3923 0.6901 1.0711 1.3368 16 1.0690 1.0672 17 0.3919 0.6892 1.3334 17 18 0.1274 0.3915 0.6884 1.3304 1.7341 2.1009 18 19 0.1274 0.3912 0.6876 1.0655 1.3277 1.7291 2.0930 2.8609 19 20 0.1273 0,3909 0.6870 1.0640 1.3253 1.7247 2.0860 2.8453 20 0.3906 1.0627 1.0614 21 1.7207 0.1272 0.1271 0.1271 0.6864 1.3232 2.0796 2.5176 2.8314 21 0.6858 0.6853 0.6848 0.6844 22 0.3904 1.3212 1.7171 2.0739 2,5083 2.8188 22 0.3902 0.3900 1.3195 1.3178 1.3163 23 1.0603 1.7139 2.0687 2.4999 2.8073 23 24 0.1270 1.0593 1.7109 2.0639 2,4922 2.7970 24 25 0.1269 0.3898 1,0584 1.7081 2.0595 2.4851 2.7874 25 0.1269 0.1268 0.1268 0.6840 0.6837 1.0575 1.0567 26 0.3896 1.3150 1.7056 2.0555 2.4786 2,7787 26 27 0.3894 1.3137 1.7033 2.0518 2.4727 2.7707 27 1.7011 1.6991 28 0.3893 1.3125 2,4671 2,4620 2,4573 0.6834 1,0560 2.0484 2.7633 28 1.3114 1.3104 29 0.1268 0.3892 0.6830 1,0553 2.0452 2.7564 29 30 0.1267 0.3890 0.6828 1.0547 1.6973 2.0423 2.7500 30 0.6807 0.6794 0.6786 0.6780 1.6839 1.6759 1.6706 2.02|1 2.0086 2.0003 1.9944 40 0.1265 0.3881 1.0500 1.3031 2,4233 2,7045 40 50 0.1263 0.3875 1.0473 1.2987 2.4033 2.6778 50 0.3872 0,3869 2.3901 2.3808 60 0.1262 1.0455 1.2958 2.6603 60 70 0.1261 1,0442 1.2938 1.2922 1.6669 2.6479 70 80 0.1261 0.3867 0.6776 1.0432 1.6641 1.9901 2,3739 2.6387 80 1.0424 1.0418 90 0.1260 0.3866 0.6772 1.2910 1.6620 1.9867 2.3685 2.6316 90 100 0.1260 0.3864 0.6770 1.2901 1.6602 1.9840 2.3642 2.6259 100 0.1258 0.1257 0.6755 0.6750 0.6745 1.6510 1.6479 1,6449 0.3858 1.2849 1.2832 1.9695 1.9647 1.9600 250 1,0386 2.3414 2.5956 250 500 0.3855 1.0375 2.3338 2.5857 500 0.1257 0.3853 1.0364 1.2816 2.3263 2.5758 Conf. Level One Tail Two Tails 0.1 0.45 0.95 0.025 0.3 0.5 0.7 0.8 0.9 0.98 0.99 Conf. Level 0.35 0.25 0.15 0.3 0.1 0.05 0.01 0.005 One Tail 0.9 0.7 0.5 0.2 0.1 0.05 0.02 0.01 Two Tails
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Knowledge Booster
Application of Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman