a. State the null and alternative hypothesis in this global test for linear model utility. b. Give the p-value and your conclusion. c. Conduct t-tests on each of the beta parameters. What is your conclusion in each case? d. What percentage of the variation in the price is explained by these independent variables? Based on this, is a multiple linear regression model a good model for these data? Explain.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

a and b

B
D
E
F
G
H
K
M
1
Sum of Bedrooms and Bathrooms Age of the Home Sales Price
Sum of Bedrooms and Bathrooms
Sum of Bedrooms and Bathrooms Line
2
5
70
227,900
284,900
149,900
Fit Plot
3
59
Residual Plot
4
4
70
400000
800,000
5
6.5
48
309,900
6
5.5
64
134,900
600,000
200000
440,000
150,000
7
10.5
21
8
4
62
400,000
9
70
154,900
10 •
12
200,000
10
50
700,000
-200000
11
6
53
257,000
239,900
349,900
Sum of Bedrooms and Bathrooms
12
7
59
2
4.
6
8
10
12
13
7.5
73
Sum of Bedrooms and Bathrooms
14
20
339,900
Age of the Home Residual Plot
7.5
15
46
289,000
400000
16
Age of the Home Line Fit Plot
6.5
17
399,900
300000
17
7
19
290,000
800,000
18
62
278,000
200000
700,000
19
100000
600,000
20
SUMMARY OUTPUT
500,000
21
20
70
400,000
10
30
40
50
80
-100000
Regression Statistics
Multiple R
R Square
Adjusted R Square
22
300,000
23
0.621120988
-200000
200,000
Age of the Home
100,000
24
0.385791282
25
0.298047179
10
20
30
40
50
60
70
80
26
Standard Error
114352.208
Age of the Home
27
Observations
17
28
29
ANOVA
Normal Probability Plot
30
df
MS
Significance F
F
31
Regression
2
1.14988E+11 57494139965
4.396777334
0.032977053
800000
32
Residual
14
1.8307E+11 13076427484
700000
600000
33
Total
16
2.98058E+11
500000
34
400000
Standard Error
P-value
0.746793667
Upper 95%
35
Coefficients
68063.34627
t Stat
Lower 95%
Lower 95.0%
Upper 95.0%
300000
36
206682.4812 0.329313572
-375226.4881
-375226.4881
Intercept
37 Sum of Bedrooms and Bathrooms
Age of the Home
511353.1807
511353.1807
200000
44956.45037
22249.49977 2.020560051
0.062882492
-2763.980539
92676.88129
-2763.980539
92676.88129
100000
38
-1125.62813
1767.438606 -0.63686972
0.534485638
-4916.406924
2665.150663
-4916.406924
2665.150663
20
40
60
80
100
120
39
40
Sample Percentile
41
42
RESIDUAL OUTPUT
PROBABILITY OUTPUT
43
44
Observation
redicted Sales Pric Residuals andard Residuals
Percentile
Sales Price
45
1
214051.629
13848.37099 0.129464324
2.941176471
134900
46
2
271389.9888
13510.01118 0.126301098
8.823529412
149900
47
3
169095.1786
-19195.1786 -0.17945005
14.70588235
150000
48
4
306250.1234
3649.876563 0.034121616
20.58823529
154900
49
243283.623
-108383.623 -1.01324643
26.47058824
227900
50
6
516467.8845
-76467.8845 -0.71487563
32.35294118
239900
51
178100.2037
-28100.2037
-0.26270049
38.23529412
257000
52
8
214051.629
-59151.629
-0.55299108
44.11764706
278000
53
326477.0924
373522.9076 3.491955176
50
284900
54
10
278143.7576
-21143.7576 -0.19766674
55.88235294
289000
55
11
316346.4392
-76446.4392-0.71467515
61.76470588
290000
56
12
323065.8705
26834.12945 0.250864339
67.64705882
309900
57
13
382724.1615
-42824.1615 -0.40035042
73.52941176
339900
58
14
241066.7041
47933.29586 0.448114204
79.41176471
349900
59
15
341144.5955
58755.40452 0.549286897
85.29411765
399900
60
16
361371.5644
-71371.5644 -0.66723164
91.17647059
440000
61
17
312969.5548
-34969.5548 -0.32692002
97.05882353
700000
62
Residuals
Residuals
Sales Price
Sales Price
Sales Price
Transcribed Image Text:B D E F G H K M 1 Sum of Bedrooms and Bathrooms Age of the Home Sales Price Sum of Bedrooms and Bathrooms Sum of Bedrooms and Bathrooms Line 2 5 70 227,900 284,900 149,900 Fit Plot 3 59 Residual Plot 4 4 70 400000 800,000 5 6.5 48 309,900 6 5.5 64 134,900 600,000 200000 440,000 150,000 7 10.5 21 8 4 62 400,000 9 70 154,900 10 • 12 200,000 10 50 700,000 -200000 11 6 53 257,000 239,900 349,900 Sum of Bedrooms and Bathrooms 12 7 59 2 4. 6 8 10 12 13 7.5 73 Sum of Bedrooms and Bathrooms 14 20 339,900 Age of the Home Residual Plot 7.5 15 46 289,000 400000 16 Age of the Home Line Fit Plot 6.5 17 399,900 300000 17 7 19 290,000 800,000 18 62 278,000 200000 700,000 19 100000 600,000 20 SUMMARY OUTPUT 500,000 21 20 70 400,000 10 30 40 50 80 -100000 Regression Statistics Multiple R R Square Adjusted R Square 22 300,000 23 0.621120988 -200000 200,000 Age of the Home 100,000 24 0.385791282 25 0.298047179 10 20 30 40 50 60 70 80 26 Standard Error 114352.208 Age of the Home 27 Observations 17 28 29 ANOVA Normal Probability Plot 30 df MS Significance F F 31 Regression 2 1.14988E+11 57494139965 4.396777334 0.032977053 800000 32 Residual 14 1.8307E+11 13076427484 700000 600000 33 Total 16 2.98058E+11 500000 34 400000 Standard Error P-value 0.746793667 Upper 95% 35 Coefficients 68063.34627 t Stat Lower 95% Lower 95.0% Upper 95.0% 300000 36 206682.4812 0.329313572 -375226.4881 -375226.4881 Intercept 37 Sum of Bedrooms and Bathrooms Age of the Home 511353.1807 511353.1807 200000 44956.45037 22249.49977 2.020560051 0.062882492 -2763.980539 92676.88129 -2763.980539 92676.88129 100000 38 -1125.62813 1767.438606 -0.63686972 0.534485638 -4916.406924 2665.150663 -4916.406924 2665.150663 20 40 60 80 100 120 39 40 Sample Percentile 41 42 RESIDUAL OUTPUT PROBABILITY OUTPUT 43 44 Observation redicted Sales Pric Residuals andard Residuals Percentile Sales Price 45 1 214051.629 13848.37099 0.129464324 2.941176471 134900 46 2 271389.9888 13510.01118 0.126301098 8.823529412 149900 47 3 169095.1786 -19195.1786 -0.17945005 14.70588235 150000 48 4 306250.1234 3649.876563 0.034121616 20.58823529 154900 49 243283.623 -108383.623 -1.01324643 26.47058824 227900 50 6 516467.8845 -76467.8845 -0.71487563 32.35294118 239900 51 178100.2037 -28100.2037 -0.26270049 38.23529412 257000 52 8 214051.629 -59151.629 -0.55299108 44.11764706 278000 53 326477.0924 373522.9076 3.491955176 50 284900 54 10 278143.7576 -21143.7576 -0.19766674 55.88235294 289000 55 11 316346.4392 -76446.4392-0.71467515 61.76470588 290000 56 12 323065.8705 26834.12945 0.250864339 67.64705882 309900 57 13 382724.1615 -42824.1615 -0.40035042 73.52941176 339900 58 14 241066.7041 47933.29586 0.448114204 79.41176471 349900 59 15 341144.5955 58755.40452 0.549286897 85.29411765 399900 60 16 361371.5644 -71371.5644 -0.66723164 91.17647059 440000 61 17 312969.5548 -34969.5548 -0.32692002 97.05882353 700000 62 Residuals Residuals Sales Price Sales Price Sales Price
a. State the null and alternative hypothesis in this global test for linear model utility.
b. Give the p-value and your conclusion.
c. Conduct t-tests on each of the beta parameters. What is your conclusion in each case?
d. What percentage of the variation in the price is explained by these independent variables?
Based on this, is a multiple linear regression model a good model for these data? Explain.
Transcribed Image Text:a. State the null and alternative hypothesis in this global test for linear model utility. b. Give the p-value and your conclusion. c. Conduct t-tests on each of the beta parameters. What is your conclusion in each case? d. What percentage of the variation in the price is explained by these independent variables? Based on this, is a multiple linear regression model a good model for these data? Explain.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman