a. r(t) b. r() %3D [сos (t /2)]i + [sin (t/2)]j + (/2)k, о <184т с. r() %3D (сos ti — (sin f)j — tk, —2т <1s о (сos 4)i + (sin 4:)j + 4k, 0 — 1 <п/2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question

Length is independent of parametrization To illustrate that the length of a smooth space curve does not depend on the parameterization you use to compute it, calculate the length of one turn of the helix in Example 1 with the following parametrizations.

a. r(t)
b. r() %3D [сos (t /2)]i + [sin (t/2)]j + (/2)k, о <184т
с. r() %3D (сos ti — (sin f)j — tk, —2т <1s о
(сos 4)i + (sin 4:)j + 4k, 0 — 1 <п/2
Transcribed Image Text:a. r(t) b. r() %3D [сos (t /2)]i + [sin (t/2)]j + (/2)k, о <184т с. r() %3D (сos ti — (sin f)j — tk, —2т <1s о (сos 4)i + (sin 4:)j + 4k, 0 — 1 <п/2
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Application of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,