A. {p(t) | √p(t)dt = 0} B. {p(t) | p′ (0) = p(7)} C. {p(t) | p' (t) is constant } D. {p(t) | p(4) = 3} E. {p(t) | p' (t) + 4p(t) + 2 = 0} F. {p(t) | p(8) = 0}

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Let P2 denote the vector space of polynomials of degree up to 2. Which of the following subsets of P2 are subspaces of P2?

A. {p(t) | S₁¹ p(t)dt = 0}
B. {p(t) | p' (0) = p(7)}
C. {p(t) | p' (t) is constant}
D. {p(t) | p(4) = 3}
E. {p(t) | p' (t) + 4p(t) + 2 = 0}
F. {p(t) | p(8) = 0}
Transcribed Image Text:A. {p(t) | S₁¹ p(t)dt = 0} B. {p(t) | p' (0) = p(7)} C. {p(t) | p' (t) is constant} D. {p(t) | p(4) = 3} E. {p(t) | p' (t) + 4p(t) + 2 = 0} F. {p(t) | p(8) = 0}
Expert Solution
Step 1: Problem (A)

Theorem: The necessary and sufficient condition for a sub set W of a vector soace V(F) is a. alpha space plus space b. beta space element of space W 

                            for every alpha comma space beta space element of space W space a n d space a comma space b space element of space F

(A)  Given sub set of P subscript 2 is  W space equals space open curly brackets p open parentheses t close parentheses space divided by space integral subscript 0 superscript 1 p open parentheses t close parentheses d t space equals space 0 close curly brackets

              Let  p open parentheses t close parentheses comma space q open parentheses t close parentheses space element of space W space rightwards double arrow space  integral subscript 0 superscript 1 p open parentheses t close parentheses d t space equals space 0 space space space a n d space integral subscript 0 superscript 1 q open parentheses t close parentheses d t space equals space 0

             Let  a comma space b space element of space R ( scalars in field  )  

                   consider  integral subscript 0 superscript 1 open square brackets a. p open parentheses t close parentheses plus b. q open parentheses t close parentheses close square brackets d t space equals space a integral subscript 0 superscript 1 p open parentheses t close parentheses d t space plus b integral subscript 0 superscript 1 q open parentheses t close parentheses d t space

                                                                    equals space a space open parentheses 0 close parentheses space plus space b open parentheses 0 close parentheses

                                                                     equals space 0

               From the definition of given set W,   a. p open parentheses t close parentheses plus b. q open parentheses t close parentheses space element of space W   for all space p open parentheses t close parentheses comma space q open parentheses t close parentheses space element of space W space a n d space a comma space b space element of space R

                     therefore W is a subspace of P subscript 2

steps

Step by step

Solved in 6 steps with 47 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,