(a). Given A=ax - ay, B=2az, and C=-ax + 3ay, find: (i) A. BxC Ans.-4 ii) (Ā xB ) XC Ans. -8az (b) Use spherical coordinates to write the differential surface areas dS1, and dS2, and then integrate to obtain the areas of the surfaces marked land 2in FIG.Q1(b). π Ans. 6 dS₁ dS₂ FIG. Q1(b)
(a). Given A=ax - ay, B=2az, and C=-ax + 3ay, find: (i) A. BxC Ans.-4 ii) (Ā xB ) XC Ans. -8az (b) Use spherical coordinates to write the differential surface areas dS1, and dS2, and then integrate to obtain the areas of the surfaces marked land 2in FIG.Q1(b). π Ans. 6 dS₁ dS₂ FIG. Q1(b)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![(a). Given A=ax - ay, B=2az, and C=-ax + 3ay, find:
(i) A. BxC
Ans.-4
ii) (Ā xB ) XC
Ans. -8az
(b) Use spherical coordinates to write the differential surface areas dS1, and dS2, and then integrate to
obtain the areas of the surfaces marked land 2in FIG.Q1(b).
π
Ans.
6
dS₁
dS₂
FIG. Q1(b)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1cbac046-08c6-4fd6-9456-a134969ef909%2Ff21ebf13-2818-4825-adef-77341e15221f%2Fxdzujua_processed.png&w=3840&q=75)
Transcribed Image Text:(a). Given A=ax - ay, B=2az, and C=-ax + 3ay, find:
(i) A. BxC
Ans.-4
ii) (Ā xB ) XC
Ans. -8az
(b) Use spherical coordinates to write the differential surface areas dS1, and dS2, and then integrate to
obtain the areas of the surfaces marked land 2in FIG.Q1(b).
π
Ans.
6
dS₁
dS₂
FIG. Q1(b)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)