a. Find the Taylor polynomial of 6th order at a=- 2 b. Find error at x = π. X c. Graph the original function and T₂(x),T₁(x), and Tg(x). 2 6 f(x)=cos2x

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Taylor Polynomial Approximation and Error Analysis

#### Problem 1:
Consider the function \( f(x) = \cos(2x) \). Perform the following tasks:

**a.** Find the Taylor polynomial of 6th order at \( a = \frac{\pi}{2} \).

**b.** Find the error at \( x = \pi \).

**c.** Graph the original function \( f(x) = \cos(2x) \) along with the Taylor polynomials \( T_2(x) \), \( T_4(x) \), and \( T_6(x) \).

### Solution Approach:

#### a. Taylor Polynomial of 6th Order at \( a = \frac{\pi}{2} \)

The general formula for the Taylor polynomial of a function \( f(x) \) centered at \( a \) is given by:
\[ T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x - a)^k \]

Calculate the derivatives of \( f(x) = \cos(2x) \) and evaluate them at \( x = \frac{\pi}{2} \):

1. \( f(x) = \cos(2x) \)
   - \( f\left(\frac{\pi}{2}\right) = \cos\left(\pi\right) = -1 \)
   
2. \( f'(x) = -2\sin(2x) \)
   - \( f'\left(\frac{\pi}{2}\right) = -2\sin(\pi) = 0 \)
   
3. \( f''(x) = -4\cos(2x) \)
   - \( f''\left(\frac{\pi}{2}\right) = -4\cos(\pi) = 4 \)
   
4. \( f^{(3)}(x) = 8\sin(2x) \)
   - \( f^{(3)}\left(\frac{\pi}{2}\right) = 8\sin(\pi) = 0 \)
   
5. \( f^{(4)}(x) = 16\cos(2x) \)
   - \( f^{(4)}\left(\frac{\pi}{2}\right) = 16\cos(\pi) = -16
Transcribed Image Text:### Taylor Polynomial Approximation and Error Analysis #### Problem 1: Consider the function \( f(x) = \cos(2x) \). Perform the following tasks: **a.** Find the Taylor polynomial of 6th order at \( a = \frac{\pi}{2} \). **b.** Find the error at \( x = \pi \). **c.** Graph the original function \( f(x) = \cos(2x) \) along with the Taylor polynomials \( T_2(x) \), \( T_4(x) \), and \( T_6(x) \). ### Solution Approach: #### a. Taylor Polynomial of 6th Order at \( a = \frac{\pi}{2} \) The general formula for the Taylor polynomial of a function \( f(x) \) centered at \( a \) is given by: \[ T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x - a)^k \] Calculate the derivatives of \( f(x) = \cos(2x) \) and evaluate them at \( x = \frac{\pi}{2} \): 1. \( f(x) = \cos(2x) \) - \( f\left(\frac{\pi}{2}\right) = \cos\left(\pi\right) = -1 \) 2. \( f'(x) = -2\sin(2x) \) - \( f'\left(\frac{\pi}{2}\right) = -2\sin(\pi) = 0 \) 3. \( f''(x) = -4\cos(2x) \) - \( f''\left(\frac{\pi}{2}\right) = -4\cos(\pi) = 4 \) 4. \( f^{(3)}(x) = 8\sin(2x) \) - \( f^{(3)}\left(\frac{\pi}{2}\right) = 8\sin(\pi) = 0 \) 5. \( f^{(4)}(x) = 16\cos(2x) \) - \( f^{(4)}\left(\frac{\pi}{2}\right) = 16\cos(\pi) = -16
Expert Solution
steps

Step by step

Solved in 8 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning