a. Find the rotation of v= through 0 = 4. 23 2 3 1 about the z axis

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

a. Find the rotation of vector **v =** \(\begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}\) about the z-axis through \(\theta = \frac{\pi}{4}\).

**Explanation:**

To solve this problem, we need to apply a rotation matrix to the given vector **v**. The rotation matrix for a counterclockwise rotation about the z-axis by an angle \(\theta\) is given by:

\[
R = \begin{bmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Given \(\theta = \frac{\pi}{4}\), we have:

- \(\cos\theta = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\)
- \(\sin\theta = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\)

Substituting these into the rotation matrix, we have:

\[
R = \begin{bmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

To find the rotated vector **v'**, compute:

\[
\textbf{v'} = R \cdot \textbf{v} = \begin{bmatrix}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}
\]

Carry out the matrix multiplication to find the resulting vector **v'**.
Transcribed Image Text:**Problem Statement:** a. Find the rotation of vector **v =** \(\begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}\) about the z-axis through \(\theta = \frac{\pi}{4}\). **Explanation:** To solve this problem, we need to apply a rotation matrix to the given vector **v**. The rotation matrix for a counterclockwise rotation about the z-axis by an angle \(\theta\) is given by: \[ R = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \] Given \(\theta = \frac{\pi}{4}\), we have: - \(\cos\theta = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\) - \(\sin\theta = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\) Substituting these into the rotation matrix, we have: \[ R = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \] To find the rotated vector **v'**, compute: \[ \textbf{v'} = R \cdot \textbf{v} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} \] Carry out the matrix multiplication to find the resulting vector **v'**.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,