a. Determine the maximum value of the energy gap that a semiconductor, used as a photoconducto can have if it is to be sensitive to yellow light (600 nm). b. A photodetector whose area is 5 × 10 cm’ is irradiated with yellow light whose intensity is 2 m\ cm". Assuming that each photon generates one electron-hole pair, calculate the number of pair generated per second. c. From the known energy gap of the semiconductor GaAs (E, = 1.42 eV), calculate the primar wavelength of photons emitted from this crystal as a result of electron-hole recombination. d. Is the above wavelength visible? e. Will a silicon photodetector be sensitive to the radiation from a GaAs laser? Why?
Particle Theory of Light
The particle theory of light was the proposal made by Newton in 1704 in his treatise Opticks. This is the most basic light theory, in which light is thought to be made up of microscopic particles known as "corpuscles" and that's why this particle theory of light is also named as Corpuscular theory of light.
Stopping Potential
In an experiment conducted by Heinrich Hertz, an apparatus was made where the incident light was made to fall on the metallic plate, it was discovered that metals emit electrons. The surface electrons are bound to metals with a minimum amount of energy and some of the incident photos enter the surface, they undergo collision with the atoms of the metal, they get absorbed and emit energy to an election, making it photoelectron, where the collision between the photons and electrons ejects the electrons out of the metal and with a negatively charged electron, causes photocurrent and when this current passes it creates an electric field where there is a potential difference at the output due to the anode and cathode of the electrode of the apparatus. This study involves the theory of Quantum physics and electromagnetism involving electromagnetic radiation and electromagnetic wave theory.
Quantization of Charges
An electron is a negatively charged subatomic particle either attached to an an atom or sticks to the nucleus of the atom. Electrons exert the negative charge that tries to balance the positive charge of the nucleus.
![a. Determine the maximum value of the energy gap that a semiconductor, used as a photoconductor,
can have if it is to be sensitive to yellow light (600 nm).
b. A photodetector whose area is 5 × 10* cm’ is irradiated with yellow light whose intensity is 2 mW
cm". Assuming that each photon generates one electron-hole pair, calculate the number of pairs
generated per second.
c. From the known energy gap of the semiconductor GaAs (E, = 1.42 eV), calculate the primary
wavelength of photons emitted from this crystal as a result of electron-hole recombination.
d. Is the above wavelength visible?
e. Will a silicon photodetector be sensitive to the radiation from a GaAs laser? Why?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F73f3f4b6-52db-4741-8b04-0e6d56b9a472%2F73cfddd8-9fba-459f-9017-5895dcbfe610%2F8v760f_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)