a. determine the Fourier coefficients. b. Write the corresponding series.  c. Expand the Fourier series up to at least n = 5.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

 

a. determine the Fourier coefficients.

b. Write the corresponding series. 

c. Expand the Fourier series up to at least n = 5. 

d. Write the convergence of the series

e. Use a graphing program to check that the Fourier series converges to the indicated function 

g(t) = {-t+ 1, -n <t < 0
0 <t <n '
-t + 1, -n <t < 0
g(t + 2) = g(t)
%3D
l-t – 1,
|
Transcribed Image Text:g(t) = {-t+ 1, -n <t < 0 0 <t <n ' -t + 1, -n <t < 0 g(t + 2) = g(t) %3D l-t – 1, |
Expert Solution
Step 1

Given function is

g(t)=-t+1,-π<t<0-t-1,0<t<π, g(t+2π)=g(t)

Solution of part a.:

 Fourier coefficient of g(t) are

a0=1π-ππg(t)dt=1π-π0(-t+1)dt+0π(-t-1)dt=1π-t22+tt=-π0+-t22-tt=0π=1π0--π22-π+-π22-π-0=0

an=1π-ππg(t)cosnt dt=1π-π0(-t+1)cosnt dt+0π(-t-1)cosnt dt=1πn-t+1sinnt-cosntn2t=-π0+n-t-1sinnt-cosntn2t=0π=1πcosnπ-1n2+1-cosnπn2=0

bn=1π-ππg(t)sinnt dt=1π-π0(-t+1)sinnt dt+0π(-t-1)sinnt dt=1πnt-1cosnt-sinntn2t=-π0+nt+1cosnt-sinntn2t=0π=1ππ+1cosnπ-1n+π+1cosnπ-1n=2ππ+1cosnπ-1n=2ππ+1-1n-1n

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,