A. Demuestra que B={1+x,x+x,1+r} es una base para P2 espacio de polinomios de segundo grado). 2 B. Obtén el polinomio característico, los eigenvalores y eigenvectores de la matriz 2 -1 C. Determina si el siguiente conjunto de vectores es ortogonal: [ -3 1 2]T, [2 4 1]T [1 -1 2]T. Después, construye una base ortonormal para R3 (Vector de tres dimensiones con entradas reales).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question


A)Show that B is a basis for P2 second-degree polynomial space

 

B)Obtain the characteristic polynomial, the eigenvalues ​​and eigenvectors of the following matrix

 

C)Determine whether the following set of vectors is orthogonal. Then construct an orthonormal basis for R3 (THREE-DIMENSIONAL VECTOR)

A. Demuestra que B={1+x,x+x,1+r}
es una base para P2 espacio de polinomios de segundo grado).
B. Obtén el polinomio característico, los eigenvalores y eigenvectores de la matriz
-1
C. Determina si el siguiente conjunto de vectores es ortogonal: [ -3 1 2]T, [2 4 1]T [1 -1 2]T. Después,
construye una base ortonormal para R3 (Vector de tres dimensiones con entradas reales).
Transcribed Image Text:A. Demuestra que B={1+x,x+x,1+r} es una base para P2 espacio de polinomios de segundo grado). B. Obtén el polinomio característico, los eigenvalores y eigenvectores de la matriz -1 C. Determina si el siguiente conjunto de vectores es ortogonal: [ -3 1 2]T, [2 4 1]T [1 -1 2]T. Después, construye una base ortonormal para R3 (Vector de tres dimensiones con entradas reales).
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Matrix Eigenvalues and Eigenvectors
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,