A. DATA FOR: Pupal Mass Sample Mass (g) Development Time (Days) 1 0.688 65 Frequency Distribution of Development Time 0.688 66 Frequency Distribution of Pupal Mass (g) 20 0.658 64 4 0.60 66 10 0.612 60 15 0.625 59 0.685 59 10 0.682 59 10 11 0.680 50 12 10 0.680 62 13 11 0.602 70 14 12 0.828 71 15 13 0.805 70 16 14 0.888 72 55.00 59.00 63.00 67.00 71.00 75.00 17 15 0.805 64 0.60 0.66 0.72 0.78 0.84 0.90 Development Time (Days) 18 15 0.822 64 19 16 0.601 64 Pupal Mass (g) 20 18 0.766 64 21 19 0.772 65 22 0.755 65 Development Time (Days) vs. Mass (g) 20 23 21 0.758 65 80 24 22 0.743 65 25 23 0.708 65 .... 26 24 0.773 65 27 25 0.773 65 28 25 0.771 65 40 29 26 0.69 66 30 28 0.805 66 20 31 29 0.885 66 32 30 0.801 66 33 0.65 0.7 0.75 0.8 0.85 34 Па mean =AVERAGE(range) Mass (g) 35 konba 26 24 0.773 65 27 25 0.773 65 28 25 0.771 65 29 26 0.60 66 30 28 0.805 66 31 29 0.885 66 30 0.801 66 33 34 п3 mean =AVERAGE(range) median =MEDIAN(range) mode =MODE(range) standard deviation =STDEV(range) variance =VAR(range) coefficient of variation (SD/mean) 35 36 37 39 40 covariance =COVAR(range 1, range 2) correlation coefficient =CORREL(range 1, range 2) 41 43

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Topic Video
Question

Attached is the dataset:

13. Using the appropriate formula, calculate the mode for development time. mode=  days

14) Using the appropriate formula, calculate the standard deviation for development time to 3 decimals. s =  days

15) Using the appropriate formula, calculate the variance for development time to 3 decimals. s2 =  

16) Using the appropriate formula, calculate the coefficient of variation for development time to 3 decimals. CV = 

A.
DATA FOR: Pupal Mass
Sample
Mass (g)
Development Time (Days)
1
0.688
65
Frequency Distribution of Development Time
0.688
66
Frequency Distribution of Pupal Mass (g)
20
0.658
64
4
0.60
66
10
0.612
60
15
0.625
59
0.685
59
10
0.682
59
10
11
0.680
50
12
10
0.680
62
13
11
0.602
70
14
12
0.828
71
15
13
0.805
70
16
14
0.888
72
55.00
59.00
63.00
67.00
71.00
75.00
17
15
0.805
64
0.60
0.66
0.72
0.78
0.84
0.90
Development Time (Days)
18
15
0.822
64
19
16
0.601
64
Pupal Mass (g)
20
18
0.766
64
21
19
0.772
65
22
0.755
65
Development Time (Days) vs. Mass (g)
20
23
21
0.758
65
80
24
22
0.743
65
25
23
0.708
65
....
26
24
0.773
65
27
25
0.773
65
28
25
0.771
65
40
29
26
0.69
66
30
28
0.805
66
20
31
29
0.885
66
32
30
0.801
66
33
0.65
0.7
0.75
0.8
0.85
34
Па
mean =AVERAGE(range)
Mass (g)
35
konba
Transcribed Image Text:A. DATA FOR: Pupal Mass Sample Mass (g) Development Time (Days) 1 0.688 65 Frequency Distribution of Development Time 0.688 66 Frequency Distribution of Pupal Mass (g) 20 0.658 64 4 0.60 66 10 0.612 60 15 0.625 59 0.685 59 10 0.682 59 10 11 0.680 50 12 10 0.680 62 13 11 0.602 70 14 12 0.828 71 15 13 0.805 70 16 14 0.888 72 55.00 59.00 63.00 67.00 71.00 75.00 17 15 0.805 64 0.60 0.66 0.72 0.78 0.84 0.90 Development Time (Days) 18 15 0.822 64 19 16 0.601 64 Pupal Mass (g) 20 18 0.766 64 21 19 0.772 65 22 0.755 65 Development Time (Days) vs. Mass (g) 20 23 21 0.758 65 80 24 22 0.743 65 25 23 0.708 65 .... 26 24 0.773 65 27 25 0.773 65 28 25 0.771 65 40 29 26 0.69 66 30 28 0.805 66 20 31 29 0.885 66 32 30 0.801 66 33 0.65 0.7 0.75 0.8 0.85 34 Па mean =AVERAGE(range) Mass (g) 35 konba
26
24
0.773
65
27
25
0.773
65
28
25
0.771
65
29
26
0.60
66
30
28
0.805
66
31
29
0.885
66
30
0.801
66
33
34
п3
mean =AVERAGE(range)
median =MEDIAN(range)
mode =MODE(range)
standard deviation =STDEV(range)
variance =VAR(range)
coefficient of variation (SD/mean)
35
36
37
39
40
covariance =COVAR(range 1, range 2)
correlation coefficient =CORREL(range 1, range 2)
41
43
Transcribed Image Text:26 24 0.773 65 27 25 0.773 65 28 25 0.771 65 29 26 0.60 66 30 28 0.805 66 31 29 0.885 66 30 0.801 66 33 34 п3 mean =AVERAGE(range) median =MEDIAN(range) mode =MODE(range) standard deviation =STDEV(range) variance =VAR(range) coefficient of variation (SD/mean) 35 36 37 39 40 covariance =COVAR(range 1, range 2) correlation coefficient =CORREL(range 1, range 2) 41 43
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 8 images

Blurred answer
Knowledge Booster
Centre, Spread, and Shape of a Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman