A. Consider the function/(x)=-3x²+2x. Find the average rate of change from x-1 tox-3. Using your calculator, explore (as directed below) to find the instantaneous rate of change at x-2. Remember, this will be the slope of the tangent line. Follow the instructions below. The first function (y) is the function under consideration. The next five (yz through ye) you are going to explore to find which one is the tangent line. Note: A tangent line will touch the curve at only one point in the immediate area you are observing. Since you are zoomed in rather closely, however, it will look like every line is touching the curve at only one point. Note that the real tangent line will not "cross through the curve at the given point, it will only "touch" the curve. Another way to think of it is that the tangent line will not cross from one side of the curve to the other, but remain on one side where it skirts the edge in one point and keeps going. Given the limits of the calculator and the inability to zoom in sufficiently, it may appear that the tangent line hits in multiple spots. However, knowing that one of the lines y through ye actually is the tangent line, you should be able to pick the correct one as you change windows and zoom in. First type in the functions. Then set the WINDOW 1 values given below. Graph and observe. Then set a new window using the WINDOW 2 values below. Graph and observe. Set a 3 window using the WINDOW 3 values below. Graph and observe. Type in your calculator in the function screen: 3₁ =-3x² + 2x y/₂ = -5x+2 y₁ =-6x+4 J', = -8x+8 y=-10x+12 y = -13x+18 Start with the 1" window, then zoom with the 2, then the 3: WINDOW 1 WINDOW 2 WINDOW3 Xmin | Xmin Xmin J Xmax 5 Xmax-4 Xsel 1 Xsel 1 Ymin -10 Ymin10 Ymax 5 Ymax A Ysel - I Ysel-1 Which of the lines ya through ye is the tangent line to the curve yi atx=2? Write it in the box and circle it above. Examine the equation of that line. What is the slope of the line? Xmax-3 Xsel-1 Ymin=-16 Ymax Yscl-1 2. 3.
A. Consider the function/(x)=-3x²+2x. Find the average rate of change from x-1 tox-3. Using your calculator, explore (as directed below) to find the instantaneous rate of change at x-2. Remember, this will be the slope of the tangent line. Follow the instructions below. The first function (y) is the function under consideration. The next five (yz through ye) you are going to explore to find which one is the tangent line. Note: A tangent line will touch the curve at only one point in the immediate area you are observing. Since you are zoomed in rather closely, however, it will look like every line is touching the curve at only one point. Note that the real tangent line will not "cross through the curve at the given point, it will only "touch" the curve. Another way to think of it is that the tangent line will not cross from one side of the curve to the other, but remain on one side where it skirts the edge in one point and keeps going. Given the limits of the calculator and the inability to zoom in sufficiently, it may appear that the tangent line hits in multiple spots. However, knowing that one of the lines y through ye actually is the tangent line, you should be able to pick the correct one as you change windows and zoom in. First type in the functions. Then set the WINDOW 1 values given below. Graph and observe. Then set a new window using the WINDOW 2 values below. Graph and observe. Set a 3 window using the WINDOW 3 values below. Graph and observe. Type in your calculator in the function screen: 3₁ =-3x² + 2x y/₂ = -5x+2 y₁ =-6x+4 J', = -8x+8 y=-10x+12 y = -13x+18 Start with the 1" window, then zoom with the 2, then the 3: WINDOW 1 WINDOW 2 WINDOW3 Xmin | Xmin Xmin J Xmax 5 Xmax-4 Xsel 1 Xsel 1 Ymin -10 Ymin10 Ymax 5 Ymax A Ysel - I Ysel-1 Which of the lines ya through ye is the tangent line to the curve yi atx=2? Write it in the box and circle it above. Examine the equation of that line. What is the slope of the line? Xmax-3 Xsel-1 Ymin=-16 Ymax Yscl-1 2. 3.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,