A. Completethetwo-column proofofthe midline theorem. Choose the corresponding letter of your answer from the box on the right. Given: In ABAC, D is the midpoint of AB and E is the midpoint of AC. 2E 3. Prove: DE || BC, DE = - BC Statement Reason a) DA = FC b) Property of parallelogram c) Vertical Angles Theorem d) Definition of a parallelogram e) Substitution f) Segment Addition Postulate g) ABAC, D is the midpoint of AB and E is the midpoint of AC. h) If alternate interior angles are congruent, then lines are parallel. i) Definition of midpoint j) AADE = AFCE (1) Given (2) In a ray, point at a given distance from the endpoint of the ray. (3) (4) SAS Postulate EF = DE AE = CE 22= 23 (5) Z1= 4 AB || CF (8) (9) DB = CF Quadrilateral BDFC is a parallelogram. (6) (7) Definition of midpoint CPCTC (10) (11) k) DE = BC 1) Point-Plotting Theorem m) 2DE = DF DE is on the side of DF of parallelogram BDFC. (13) (14) Substitution (16) Substitution Substitution (12) %3D DE+EF DF DE + DE = DE (15) BC = DF (17) (18) n) СРСТС o) DE || BC p) Transitive property q) 2DE - BC r) DE BC !!

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
Question
A. Completethetwo-column proofofthe midline theorem.
Choose the corresponding letter of your answer from
the box on the right.
Given: In ABAC, D is the midpoint of AB and E is the
midpoint of AC.
Prove: DE || BC, DE = - BC
2E
3
Statement
Reason
a) DA = FC
b) Property of parallelogram
c) Vertical Angles Theorem
d) Definition of a parallelogram
e) Substitution
f) Segment Addition Postulate
g) ABAC, D is the midpoint of AB and E
is the midpoint of AC.
h) If alternate interior angles are
congruent, then lines are parallel.
i) Definition of midpoint
j) AADE = AFCE
(1)
Given
(2) In a ray, point at a given distance
from the endpoint of the ray.
(3)
(4)
EF = DE
AE = CE
22= 43
SAS Postulate
(5)
Z1= 4
AB || CF
(8)
(9)
DB = CF
(6)
(7)
Definition of midpoint
СРСТС
(10)
Quadrilateral BDFC is a
parallelogram.
(11)
k) DE =
BC
DE is on the side of DF of
parallelogram BDFC.
(13)
(14)
Substitution
(16)
Substitution
Substitution
1) Point-Plotting Theorem
m) 2DE = DF
n) СРСТС
o) DE || BC
p) Transitive property
q) 2DE - BC
r) DE = BC
(12)
DE+EF DF
DE + DE = DF
(15)
BC DF
(17)
L(18)
Transcribed Image Text:A. Completethetwo-column proofofthe midline theorem. Choose the corresponding letter of your answer from the box on the right. Given: In ABAC, D is the midpoint of AB and E is the midpoint of AC. Prove: DE || BC, DE = - BC 2E 3 Statement Reason a) DA = FC b) Property of parallelogram c) Vertical Angles Theorem d) Definition of a parallelogram e) Substitution f) Segment Addition Postulate g) ABAC, D is the midpoint of AB and E is the midpoint of AC. h) If alternate interior angles are congruent, then lines are parallel. i) Definition of midpoint j) AADE = AFCE (1) Given (2) In a ray, point at a given distance from the endpoint of the ray. (3) (4) EF = DE AE = CE 22= 43 SAS Postulate (5) Z1= 4 AB || CF (8) (9) DB = CF (6) (7) Definition of midpoint СРСТС (10) Quadrilateral BDFC is a parallelogram. (11) k) DE = BC DE is on the side of DF of parallelogram BDFC. (13) (14) Substitution (16) Substitution Substitution 1) Point-Plotting Theorem m) 2DE = DF n) СРСТС o) DE || BC p) Transitive property q) 2DE - BC r) DE = BC (12) DE+EF DF DE + DE = DF (15) BC DF (17) L(18)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer