а. А- {(2, -3), (1, 0), (0, 0), (-1, -1)} b. B= {(a, b)|b = e*} с. С- (х, у) у - 2х + 1}

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Topic Video
Question

Tell whether it is a function or not a function 

a. A = {(2, -3), (1, 0), (0, 0), (-1, -1)}
b. B= {(a, b)|b = e"}
c. C= {(x, y)| y = 2x + 1}
d. D= {(a, b)|b = /1-a? }
e. E= {(x, y)ly = (x -1)² + 2}
f. F= {(x, y)x = (y+1)³ – 2}
g. G= {(x, y))x² + y² = 1}
h. H= {(x, y)\x< y}
i. I= {(x, y)| |x| + \y| = 1}
%3D
%3D
%3D
1
j. J= {(x, y)\x is positive integer and x =
+7}
У -3
Transcribed Image Text:a. A = {(2, -3), (1, 0), (0, 0), (-1, -1)} b. B= {(a, b)|b = e"} c. C= {(x, y)| y = 2x + 1} d. D= {(a, b)|b = /1-a? } e. E= {(x, y)ly = (x -1)² + 2} f. F= {(x, y)x = (y+1)³ – 2} g. G= {(x, y))x² + y² = 1} h. H= {(x, y)\x< y} i. I= {(x, y)| |x| + \y| = 1} %3D %3D %3D 1 j. J= {(x, y)\x is positive integer and x = +7} У -3
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Rules of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,