(a) Which of the constraints is redundant? Constraint #______. Justify by drawing a graph similar to Figure 7.14 on p.263. (b) Is point (9,3) a feasible solution? _____. Explain your answer (by analyzing each of the constraints). Constraint #1: _______________________________________________________________ Constraint #2: _______________________________________________________________ Constraint #3: _______________________________________________________________ Constraint #4: _______________________________________________________________ (c) Which of the following points yields the best solution? Underline the best solution: (7,5), (9,2), (6,6). Justify your answer (using the data from the above LP model). (7,5): ____________________________________________________________________ (9,2): ____________________________________________________________________ (6,6): ____________________________________________________________________
(5) Consider the following linear programming model with 4 regular constraints:
Maximize 3X + 5Y (a) Draw your graph in the space below:
subject to: 4X + 4Y ≤ 48 (constraint #1)
4X + 3Y ≤ 50 (constraint #2)
2X + 1Y ≤ 20 (constraint #3)
X ≥ 2 (constraint #4)
X, Y ≥ 0 (non-negativity constraints)
(a) Which of the constraints is redundant? Constraint #______.
Justify by drawing a graph similar to Figure 7.14 on p.263.
(b) Is point (9,3) a feasible solution? _____. Explain your answer (by analyzing each of the constraints).
Constraint #1: _______________________________________________________________
Constraint #2: _______________________________________________________________
Constraint #3: _______________________________________________________________
Constraint #4: _______________________________________________________________
(c) Which of the following points yields the best solution? Underline the best solution: (7,5), (9,2), (6,6).
Justify your answer (using the data from the above LP model).
(7,5): ____________________________________________________________________
(9,2): ____________________________________________________________________
(6,6): ____________________________________________________________________
![](/static/compass_v2/shared-icons/check-mark.png)
Linear programming is a mathematical technique that is also used in operations management departments. This technique is commonly used to find the best outcome with the maximum profit. Linear programming has various methods; each method is chosen by the companies as per their requirements or based on different factors.
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Practical Management Science](https://www.bartleby.com/isbn_cover_images/9781337406659/9781337406659_smallCoverImage.gif)
![Operations Management](https://www.bartleby.com/isbn_cover_images/9781259667473/9781259667473_smallCoverImage.gif)
![Operations and Supply Chain Management (Mcgraw-hi…](https://www.bartleby.com/isbn_cover_images/9781259666100/9781259666100_smallCoverImage.gif)
![Practical Management Science](https://www.bartleby.com/isbn_cover_images/9781337406659/9781337406659_smallCoverImage.gif)
![Operations Management](https://www.bartleby.com/isbn_cover_images/9781259667473/9781259667473_smallCoverImage.gif)
![Operations and Supply Chain Management (Mcgraw-hi…](https://www.bartleby.com/isbn_cover_images/9781259666100/9781259666100_smallCoverImage.gif)
![Business in Action](https://www.bartleby.com/isbn_cover_images/9780135198100/9780135198100_smallCoverImage.gif)
![Purchasing and Supply Chain Management](https://www.bartleby.com/isbn_cover_images/9781285869681/9781285869681_smallCoverImage.gif)
![Production and Operations Analysis, Seventh Editi…](https://www.bartleby.com/isbn_cover_images/9781478623069/9781478623069_smallCoverImage.gif)