(a) What is the probability that a randomly selected cylindrical metal bar has a length longer than 10.5 cm? (b) There is 14% chance that a randomly selected cylindrical metal bar has a length longer than K. What is the value of K? (c) The production cost of a metal bar is $80 per cm plus a basic cost of $100. Find the mean, median, standard deviation, variance, and 86th percentile of the production cost of a metal bar.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%

do part a),b) and c)

The entries in Table I are the probabilities that a random variable having the
standard normal distribution will take on a value between 0 andz. They are given
by the area of the gray region under the curve in the figure.
TABLE I
NORMAL-CURVE AREAS
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.0000
0.0398
0.0793
0.1179
0.1554
0.0359
0.0753
0.1141
0.1517
0.1879
0.0120
0.0517
0.0
0.0040
0.0080
0.0160
0.0199
0.0239
0.0279
0.0319
0.1
0.0438
0.0478
0.0557
0.0596
0.0636
0.0675
0.0714
0.1064
0.1443
0.1808
0.2
0.0832
0.0871
0.0910
0.0948
0.0987
0.1026
0.1103
0.1217
0.1591
0.1255
0.1628
0.1985
0.1293
0.1664
0.1368
0.1736
0.1406
0.1772
0.1480
0.1844
0.3
0.1331
0.4
0.1700
0.5
0.1915
0.1950
0.2019
0.2054
0.2088
0.2123
0.2157
0.2190
0.2224
0.2549
0.2852
0.6
0.2257
0.2291
0.2324
0.2357
0.2389
0.2422
0.2454
0.2486
0.2517
0.7
0.2580
0.2611
0.2642
0.2673
0.2704
0.2734
0.2764
0.2794
0.2823
0.8
0.2881
0.2910
0.2939
0.2967
0.2995
0.3023
0.3051
0.3078
0.3106
0.3133
0.9
0.3159
0.3186
0.3212
0.3238
0.3264
0.3289
0.3315
0.3340
0.3365
0.3389
1.0
0.3413
0.3438
0.3461
0.3485
0.3508
0.3531
0.3554
0.3577
0.3599
0.3621
1.1
0.3643
0.3665
0.3686
0.3708
0.3729
0.3749
0.3770
0.3790
0.3810
0.3830
1.2
0.3849
0.3869
0.3888
0.3907
0.3925
0.3944
0.3962
0.3980
0.3997
0.4015
0.4049
0.4082
0.4236
0.4370
0.4115
0.4265
0.4394
1.3
0.4032
0.4066
0.4099
0.4131
0.4147
0.4162
0.4177
0.4192
0.4332
0.4207
0.4345
0.4251
0.4382
0.4279
0.4406
1.4
0.4222
0.4292
0.4306
0.4319
1.5
0.4357
0.4418
0.4429
0.4441
1.6
0.4452
0.4463
0.4474
0.4484
0.4495
0.4505
0.4515
0.4525
0.4535
0.4545
1.7
0.4554
0.4564
0.4573
0.4582
0.4591
0.4599
0.4608
0.4616
0.4625
0.4633
1.8
0.4641
0.4648
0.4656
0.4664
0.4671
0.4678
0.4685
0.4692
0.4699
0.4706
1.9
0.4713
0.4719
0.4725
0.4732
0.4738
0.4744
0.4750
0.4756
0.4761
0.4767
2.0
0.4772
0.4778
0.4783
0.4788
0.4793
0.4798
0.4803
0.4808
0.4812
0.4817
0.4834
0.4871
0.4901
0.4838
0.4875
0.4904
0.4846
0.4881
0.4909
0.4931
0.4857
0.4890
0.4916
0.4936
0.4952
2.1
0.4821
0.4826
0.4830
0.4842
0.4850
0.4854
0.4861
0.4893
0.4864
0.4896
0.4884
0.4911
0.4887
0.4913
2.2
0.4868
0.4878
0.4898
0.4922
0.4941
2.3
0.4906
2.4
0.4918
0.4920
0.4925
0.4927
0.4929
0.4932
0.4934
2.5
0.4938
0.4940
0.4943
0.4945
0.4946
0.4948
0.4949
0.4951
0.4959
0.4969
0.4977
2.6
0.4953
0.4955
0.4956
0.4957
0.4960
0.4961
0.4962
0.4963
0.4964
2.7
0.4965
0.4966
0.4967
0.4968
0.4970
0.4971
0.4972
0.4973
0.4974
2.8
0.4974
0.4975
0.4976
0.4977
0.4978
0.4979
0.4979
0.4980
0.4981
0.4985
0.4989
2.9
0.4981
0.4982
0.4982
0.4983
0.4984
0.4984
0.4985
0.4986
0.4986
3.0
0.4987
0.4987
0.4987
0.4988
0.4988
0.4989
0.4989
0.4990
0.4990
Also, for z= 4.0, 5.0 and 6.0, the areas are 0.49997, 0.4999997, and 0.499999999.
Transcribed Image Text:The entries in Table I are the probabilities that a random variable having the standard normal distribution will take on a value between 0 andz. They are given by the area of the gray region under the curve in the figure. TABLE I NORMAL-CURVE AREAS 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0000 0.0398 0.0793 0.1179 0.1554 0.0359 0.0753 0.1141 0.1517 0.1879 0.0120 0.0517 0.0 0.0040 0.0080 0.0160 0.0199 0.0239 0.0279 0.0319 0.1 0.0438 0.0478 0.0557 0.0596 0.0636 0.0675 0.0714 0.1064 0.1443 0.1808 0.2 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1103 0.1217 0.1591 0.1255 0.1628 0.1985 0.1293 0.1664 0.1368 0.1736 0.1406 0.1772 0.1480 0.1844 0.3 0.1331 0.4 0.1700 0.5 0.1915 0.1950 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.2549 0.2852 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 0.4049 0.4082 0.4236 0.4370 0.4115 0.4265 0.4394 1.3 0.4032 0.4066 0.4099 0.4131 0.4147 0.4162 0.4177 0.4192 0.4332 0.4207 0.4345 0.4251 0.4382 0.4279 0.4406 1.4 0.4222 0.4292 0.4306 0.4319 1.5 0.4357 0.4418 0.4429 0.4441 1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 1.8 0.4641 0.4648 0.4656 0.4664 0.4671 0.4678 0.4685 0.4692 0.4699 0.4706 1.9 0.4713 0.4719 0.4725 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 0.4834 0.4871 0.4901 0.4838 0.4875 0.4904 0.4846 0.4881 0.4909 0.4931 0.4857 0.4890 0.4916 0.4936 0.4952 2.1 0.4821 0.4826 0.4830 0.4842 0.4850 0.4854 0.4861 0.4893 0.4864 0.4896 0.4884 0.4911 0.4887 0.4913 2.2 0.4868 0.4878 0.4898 0.4922 0.4941 2.3 0.4906 2.4 0.4918 0.4920 0.4925 0.4927 0.4929 0.4932 0.4934 2.5 0.4938 0.4940 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4959 0.4969 0.4977 2.6 0.4953 0.4955 0.4956 0.4957 0.4960 0.4961 0.4962 0.4963 0.4964 2.7 0.4965 0.4966 0.4967 0.4968 0.4970 0.4971 0.4972 0.4973 0.4974 2.8 0.4974 0.4975 0.4976 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 0.4985 0.4989 2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4986 0.4986 3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4990 0.4990 Also, for z= 4.0, 5.0 and 6.0, the areas are 0.49997, 0.4999997, and 0.499999999.
A factory produces cylindrical metal bar. The production process can be modeled by normal distribution
with mean length of 11 cm and standard deviation of 0.25 cm.
(a) What is the probability that a randomly selected cylindrical metal bar has a length longer than 10.5 cm?
(b) There is 14% chance that a randomly selected cylindrical metal bar has a length longer than K.
is the value of K?
What
(c) The production cost of a metal bar is $80 per cm plus a basic cost of $100. Find the mean, median,
standard deviation, variance, and 86th percentile of the production cost of a metal bar.
(d) Write a short paragraph (about 30 – 50 words) to summarize the production cost of a metal bar.
(The
summary needs to include all summary statistics found in part (c)).
(e) In order to minimize the chance of the production cost of a metal bar to be more expensive than $1000,
the senior manager decides to adjust the production process of the metal bar. The mean length is fixed
and can't be changed while the standard deviation can be adjusted. Should the process standard
deviation be adjusted to (I) a higher level than 0.25 cm, or (II) a lower level than 0.25 cm? (Write down
your suggestion, no explanation is needed in part (e)).
Transcribed Image Text:A factory produces cylindrical metal bar. The production process can be modeled by normal distribution with mean length of 11 cm and standard deviation of 0.25 cm. (a) What is the probability that a randomly selected cylindrical metal bar has a length longer than 10.5 cm? (b) There is 14% chance that a randomly selected cylindrical metal bar has a length longer than K. is the value of K? What (c) The production cost of a metal bar is $80 per cm plus a basic cost of $100. Find the mean, median, standard deviation, variance, and 86th percentile of the production cost of a metal bar. (d) Write a short paragraph (about 30 – 50 words) to summarize the production cost of a metal bar. (The summary needs to include all summary statistics found in part (c)). (e) In order to minimize the chance of the production cost of a metal bar to be more expensive than $1000, the senior manager decides to adjust the production process of the metal bar. The mean length is fixed and can't be changed while the standard deviation can be adjusted. Should the process standard deviation be adjusted to (I) a higher level than 0.25 cm, or (II) a lower level than 0.25 cm? (Write down your suggestion, no explanation is needed in part (e)).
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman