(a) What is the acceleration of the 4.00 kg crate? (b) Draw a free-body diagram for the 4.00 kg crate. Use that diagram and Newton’s second law to find the tension T in the rope that connects the two crates. (c) Draw a free-body diagram for the 6.00 kg crate. What is the direction of the net force on the 6.00 kg crate? Which is larger in magnitude, T or F? (d) Use part (c) and Newton’s second law to calculate the magnitude of F
Two crates, one with mass 4.00 kg and the other with mass
6.00 kg, sit on the frictionless surface of a frozen pond, connected by a light
rope (Fig. P4.37). A woman wearing golf shoes (for traction) pulls horizontally
on the 6.00 kg crate with a force F that gives the crate an acceleration
of 2.90 m>s2. (a) What is the acceleration of the 4.00 kg crate? (b) Draw a
free-body diagram for the 4.00 kg crate. Use that diagram and Newton’s
second law to find the tension T in the rope that connects the two crates.
(c) Draw a free-body diagram for the 6.00 kg crate. What is the direction
of the net force on the 6.00 kg crate? Which is larger in magnitude, T or F?
(d) Use part (c) and Newton’s second law to calculate the magnitude of F.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images