a We are now ready to find the rejection region for the test statistic X² = 8.73 with df = 4 and x = 0.05. On the excerpt of the Chi-Square table below, locate the row that corresponds to 4 df and the column that corresponds to a right-tail area of 0.05. The cell where these intersect contains the X0.050² critical value for the rejection region. = df 1 2 < 5 2 X0.995 6 0.0000393 3 0.0717212 0.0100251 4 0.206990 0.411740 0.675727 www 2 O p-value > 0.100 X0.950 0.0039321 0.102587 0.351846 1.145476 X0.900² 1.63539 0.0157908 2 X0.100 0.710721 1.063623 7.77944 1.61031 2 X0.050 2.70554 3.84146 0.210720 4.60517 5.99147 0.584375 6.25139 7.81473 State the critical value for the rejection region, rounded to two decimal places. X0.050² 9.48773 9.23635 11.0705 2.20413 10.6446 12.5916 *** X0.005 df 2 7.87944 1 10.5966 2 12.8381 3 14.8602 4 16.7496 5 2 The rejection region consists of Chi-Square values larger than X0.050². That is, rounded to two decimal places, the rejection region is X² > 18.5476 6 The table can also help us determine an interval for the p-value associated with X2 = 8.73. Look again on the row that corresponds to 4 df and determine which two values the test statistic of X² = 8.73 falls between. Based on the fact that the value 8.73 lies between X0.100 2 = 7.77944 and 2 X0.050 = ---Select--- , select the statement below that best describes the p-value. O p-value < 0.005 O 0.005 p-value < 0.010 O 0.010 p-value < 0.025 0.025 p-value < 0.050 0.050 < p-value < 0.100

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Question
Need help
We are now ready to find the rejection region for the test statistic \( X^2 = 8.73 \) with \( df = 4 \) and \( \alpha = 0.05 \). On the excerpt of the Chi-Square table below, locate the row that corresponds to 4 \( df \) and the column that corresponds to a right-tail area of 0.05. The cell where these intersect contains the \( \chi^2_{0.050} \) critical value for the rejection region.

| \( df \) | \( \chi^2_{0.995} \) | ... | \( \chi^2_{0.950} \) | \( \chi^2_{0.900} \) | \( \chi^2_{0.100} \) | \( \chi^2_{0.050} \) | ... | \( \chi^2_{0.005} \) | \( df \) |
|----------|-----------------|-----|-----------------|-----------------|-----------------|-----------------|-----|-----------------|-----|
| 1        | 0.0000393       | ... | 0.003921        | 0.0157908       | 2.70554         | 3.84146         | ... | 7.87944         | 1   |
| 2        | 0.0100251       | ... | 0.102587        | 0.210720        | 4.60517         | 5.99147         | ... | 10.5966         | 2   |
| 3        | 0.0717212       | ... | 0.351846        | 0.584375        | 6.25139         | 7.81473         | ... | 12.8381         | 3   |
| 4        | 0.206990        | ... | 0.710721        | 1.063623        | 7.77944         | 9.48773         | ... | 14.8602         | 4   |
| 5        | 0.411740        | ... | 1.145476        | 1.61031         | 9.23635         | 11.0705         | ... | 16.7496         | 5
Transcribed Image Text:We are now ready to find the rejection region for the test statistic \( X^2 = 8.73 \) with \( df = 4 \) and \( \alpha = 0.05 \). On the excerpt of the Chi-Square table below, locate the row that corresponds to 4 \( df \) and the column that corresponds to a right-tail area of 0.05. The cell where these intersect contains the \( \chi^2_{0.050} \) critical value for the rejection region. | \( df \) | \( \chi^2_{0.995} \) | ... | \( \chi^2_{0.950} \) | \( \chi^2_{0.900} \) | \( \chi^2_{0.100} \) | \( \chi^2_{0.050} \) | ... | \( \chi^2_{0.005} \) | \( df \) | |----------|-----------------|-----|-----------------|-----------------|-----------------|-----------------|-----|-----------------|-----| | 1 | 0.0000393 | ... | 0.003921 | 0.0157908 | 2.70554 | 3.84146 | ... | 7.87944 | 1 | | 2 | 0.0100251 | ... | 0.102587 | 0.210720 | 4.60517 | 5.99147 | ... | 10.5966 | 2 | | 3 | 0.0717212 | ... | 0.351846 | 0.584375 | 6.25139 | 7.81473 | ... | 12.8381 | 3 | | 4 | 0.206990 | ... | 0.710721 | 1.063623 | 7.77944 | 9.48773 | ... | 14.8602 | 4 | | 5 | 0.411740 | ... | 1.145476 | 1.61031 | 9.23635 | 11.0705 | ... | 16.7496 | 5
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 9 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman