A wave on a string is described by D (z, t) = (4.0cm) x sin [27 (x/ (4.8m) +t/ (0.12s) +1)], where ¤ is in m and t is in s. What is the wave number? Express your answer to two significant figures and include the appropriate units You may want to review (Page 420) For help with math skills, you may want to review: HA Substituting Numbers into Mathematical Expressions k = Value Units For general problem-solving tips and strategies for this topic, you may want to view a Video Tutor Solution of Earthquake waves. Submit Request Answer Part E At t = 0.24s, what is the displacement of the string at z = 2.8m? Express your answer to two significant figures and include the appropriate units. HA D(2.8m, 0.24s) = Value Units Submit Request Answer
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps