A vapor compression refrigeration cycle operates at steady flow conditions with 0.25 kg/s or R-134a. The table below shows some of the operating parameters and properties for the refrigerant. The compressor is refrigerated, and the condenser is also cooled with water. The compressor receives shaft power equivalent to 7.5 hp. Neglecting changes in kinetic and potential energy changes and any heat loss between devices, please answer the following. a. Complete the table below and sketch the cycle processes on a T-s diagram. When completing the table please use the same number of decimal places as in the tables. b. Determine the cooling capacity of the refrigeration unit, in Tons (1 refrigeration Ton = 211 kJ/min). c. Compute the COP. d. Determine the volume flow rate of refrigerant entering the condenser in L/min. e. Determine the mass flow rate of cooling water passing through the condenser. f. Determine the heat transfer rate from the compressor. g. Compute the rate of entropy generation in the condenser. h. Compute the rate of entropy generation in the expansion valve.
A vapor compression refrigeration cycle operates at steady flow conditions with 0.25
kg/s or R-134a. The table below shows some of the operating parameters and
properties for the refrigerant. The compressor is refrigerated, and the condenser is also
cooled with water. The compressor receives shaft power equivalent to 7.5 hp.
Neglecting changes in kinetic and potential energy changes and any heat loss between
devices, please answer the following.
a. Complete the table below and sketch the cycle processes on a T-s diagram.
When completing the table please use the same number of decimal places as in
the tables.
b. Determine the cooling capacity of the refrigeration unit, in Tons (1 refrigeration
Ton = 211 kJ/min).
c. Compute the COP.
d. Determine the volume flow rate of refrigerant entering the condenser in L/min.
e. Determine the mass flow rate of cooling water passing through the condenser.
f. Determine the heat transfer rate from the compressor.
g. Compute the rate of entropy generation in the condenser.
h. Compute the rate of entropy
generation in the expansion valve.
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 57 images